Effect of the infection with Eimeria acervulina, E. maxima and E. tenella on pigment absorption and skin deposition in broiler chickens

N J Frade-Negrete a, X Hernández-Velasco a*, B Fuente-Martínez b, M Quiroz-Pesina c, E Ávila-González b, G Tellez d

ABSTRACT. Two experiments were conducted in broiler chickens from 21 to 49 d of age to evaluate the plasmatic level, deposition, and digestibility of xanthophylls (XA) from marigold flower (Tagetes erecta) after infection with vaccine strains of Eimeria spp. In Experiment 1, 432 birds were assigned to 4 treatments: 1) non-infected control; 2) 8.32 x 10 4 sporulated Eimeria oocysts (SEO)/bird; 3) 17.82 x 10 4 SEO/bird, and 4) 49.92 x 10 4 SEO/bird. In Experiment 2, 400 broilers were assigned to 4 treatments: 1) non-infected control; treatments 2 to 4 were challenged with 8.32 x 10 4 SEO/bird. The birds received 85, 108, 141, and 162 ppm of total dietary XA from d 35 to 49 for treatments 1 to 4, respectively. Both experiments contained 4 replications (2/sex) per treatment. In Experiment 1, the SEO dose was associated with the reduction in body weight gain (BWG), skin yellowness units (b*), and plasma xanthophylls (PX). In both sexes, b* increased by 1.36/d of XA consumption. For every 10 4 SEO, PX decreased by 0.8 μg/ml/d, and 0.06 b*. In Experiment 2, no difference was detected in PX or b* at 49 d between treatments. XA digestibility decreased by 15 units in the infected birds. Results suggest that XA digestion and absorption are similar between males and females. However, females have a greater ability for skin XA deposition. After a mild Eimeria spp. infection, it is possible to achieve adequate skin yellowness (SY) levels if the infected birds are treated immediately and receive at least 62 mg of dietary XA/bird for 14 d.

Key words: broiler chicken, Eimeria, plasma xanthophyll, skin pigment.

RESUMEN. Se evaluó el nivel plasmático, depósito cutáneo y digestibilidad de xantófilas (XA) de flor de cempasúchil (Tagetes erecta) en pollos infectados por vía oral con cepas vacunales de Eimeria spp. En el experimento 1 se probaron diferentes dosis infectantes: 1) testigo no infectado; 2) 8.32 x 10 4 oocistos esporulados de Eimeria (OEE)/ave; 3) 17.82 x 10 4 OEE/ave, y 4) 49.92 x 10 4 OEE/ave; en el experimento 2 se utilizó una dosis infectante y diferentes dosis de pigmento en la dieta: 1) testigo no infectado; y los tratamientos 2 a 4 se desafiaron con 8.32 x 10 4 OEE/ave, las aves fueron tratadas, y se proporcionaron 85, 108, 141, o 162 ppm de XA totales en la dieta en los grupos 1 a 4, del día 35 al 49 de edad. Cada experimento tuvo 4 réplicas (2/sexo) por tratamiento. En el Experimento 1 la dosis de OEE se asoció con la reducción en la ganancia de peso, unidades de amarilleamiento cutáneo (b*), y nivel de xantófilas plasmáticas (XP). Por cada 10 4 OEE las XP disminuyeron 0.80 mg/ml/d, y 0.06 en b*. En el Experimento 2 la digestibilidad de las aves disminuyó 15 unidades en las aves infectadas y los niveles de XP o b* fueron similares entre tratamientos al final de la prueba. Se sugiere que la digestión y absorción de XA es entre sexos, pero la hembra deposita más XA cutáneas. Después de una infección moderada por Eimeria es posible lograr niveles comercializables de amarilleamiento cutáneo (SY) mediante un tratamiento y al menos 62 mg de XA/ave/14 d.

Palabras clave: pollo de engorda, Eimeria, xantófilas plasmáticas, pigmento cutáneo.

INTRODUCTION

In China, Spain, Italy, Mexico and Peru, amongst other countries, the consumer demands chicken with yellow skin

Accepted: 15.10.2015.

aDepartamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México Distrito Federal.

bCentro de Enseñanza, Investigación y Extensión en Producción Avícola, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México Distrito Federal.

cVepinsa S.A. de C.V., Los Mochis, Sinaloa, Mexico.

dDepartment of Poultry Science, University of Arkansas, Fayetteville, USA.

This project was sponsored by Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) de la Dirección General de Apoyo al Personal Académico (DGAPA); Proyecto IN203910-3, Universidad Nacional Autónoma de México.

*Corresponding author: X Hernández-Velasco, Av. Universidad 3000, Col. Ciudad Universitaria. Del. Coyoacán, CP. 04510. México, D.F., México; xochitl_h@yahoo.com

pigmentation. Since skin pigmentation is associated with health status and product freshness (Breithaupt 2007, Liu et al 2008, Hernandez-Velasco et al 2014), there is a large volume of whole chicken or parts commercialized with the skin (Baker and Günther 2004). The inclusion level of dietary pigment for broiler chickens varies depending upon the company, region, and country.

Commercial competition and shorter grow-out periods require the use of high concentrations of dietary xanthophylls (XA), which may represent 8 to 10% of the diet cost. In Mexico, it is very typical to feed 80 ppm or more in the last 3 or 4 weeks of the grow-out (Muñoz-Díaz et al 2012), with XA consumption per bird between 240 and 500 mg. These levels usually yield skin pigmentation levels of at least 22 skin yellowness units (b*) in live birds, and greater than 47 b* in cold carcasses, as measured in the lateral apertial pectoral area (Muñoz-Díaz et al 2012, Hernandez-Velasco et al 2014).
Amongst dietary carotenoids, in particular the XA (dihydroxycarotenoids) lutein and zeaxanthin are the components of major economic interest in Aztec marigold flower (Tagetes erecta) extract that are associated with natural yellow coloration in chicken skin and fat (Hadden et al 1999, Kotake-Nara and Nagao 2011). In addition to their pigmenting properties, XA are also antioxidants and provide natural UV protection, thus XA might be helpful to maintain healthy vision and skin. Therefore, inclusion of natural pigments in diets for poultry destined for human consumption may pose additional value to the health-conscious consumer (Baker and Günther 2004, Kijlstra et al 2012).

Skin pigmentation depends upon various factors such as: XA dose and consumption time, dietary nutritive quality, bird’s sex, bird health status, and slaughter processing conditions, among others (Britton et al 1998). From the diseases that influence skin pigmentation, coccidiosis is perhaps one of the most frequent and costly infections that affect the poultry industry globally (Ruff and Fuller 1975, Tyczkowski and Hamilton 1991). The severity of the coccidiosis effect on skin pigmentation will depend on the Eimeria strain and virulence, immune status of the bird, and other complicating factors. E. acervulina and E. maxima produce a significant reduction in plasma carotenoids (Ruff and Fuller 1975, Sharma and Fernando 1975, Ogbuokiri and Edgar 1986, Tyczkowski and Hamilton 1991). These infections are sometimes associated with lower body weight gain (BWG) that is a consequence of poor nutrient absorption due intestinal sloughing and villi shortening (Allen 1987). Plasma xanthophylls (PX) concentrations have proven to be sensitive indicators of the severity of Eimeria infections compared to other criteria such as live weight, macroscopic lesion scoring, and the number of oocysts shed in feces (Conway et al 1990).

Despite the economic impact of skin pigmentation in broiler chickens across various countries, and the fact that coccidiosis is the main infectious disease that affects it, there are very few studies, if any, that quantify the effect of Eimeria spp. infections on broiler skin pigmentation and how it may be influenced by bird’s sex. Therefore, the objectives of the current study were to evaluate the effect of Eimeria spp infection on XA absorption and deposition and ileal digestibility in broiler chickens, and to assess the recovery in skin pigmentation in broilers exposed to a mild coccidia infection.

MATERIAL AND METHODS

FACILITIES

The experiments were conducted at the Center for Research, Education, and Extension in Poultry Production (CEIEPAv) and the diagnostic laboratory of the Avian Medicine Department (DMZA) of the College of Veterinary Medicine and Zootechnics (FMVZ), at the National Autonomous University of Mexico (UNAM).

EXPERIMENTAL BIRDS

Two experiments were conducted with sexed Ross 308 broiler chickens. The birds were separated by sex, and raised from 0 to 21 d of age in floor pens in an open-sided house. The experiments were conducted in accordance with the Guidelines of the Institutional Animal Care and Use Committee of the FMVZ, at the UNAM (CICUA- FMVZ-UNAM). For both experiments, the birds were individually weighed at 21 d of age such that each pen had similar weight and weight distribution.

FEED

Diets were based on sorghum-soybean meal, and were formulated for three feeding phases: starter, 0-10 d; grower, 11-20 d; and finisher, 21-49 d of age. The diets contained meat and bone meal, and were designed to meet the nutrient specifications as recommended by the primary breeder (Aviagen 2007). Feed and water were provided ad libitum in a mash form. During the starter phase, all birds received 125 ppm of nicarbazine, and 100 ppm of sodium monensin during the grower phase, and only treatment one in the finisher phase in Experiment 1. In the finisher phase, all birds received 85 ppm of dietary XA from Aztec marigold flower.

EXPERIMENTAL DESIGN

Experiment 1. Four hundred and thirty two 21-d-old Ross 308 sexed broiler chickens were randomly assigned to 4 treatments: 1) Non-infected control; 2) 8.32 x 10^4 sporulated Eimeria oocysts (SEO) per bird; 3) 17.82 x 10^4 SEO per bird; and 4) 49.92 x 10^4 SEO per bird. Treatments contained 4 replications (2 replications of males and 2 of females) of 27 birds each. All birds received 85 ppm of dietary XA from Aztec marigold flower from 21 to 49 d of age.

Experiment 2. Four hundred 21-d-old Ross 308 sexed broiler chickens were randomly assigned to 4 dietary treatments containing 4 replications (2 replications of males and 2 females) of 25 birds each. Treatments were designed as follows: 1) Non-infected control + 85 ppm of dietary XA; 2) 8.32 x 10^4 SEO/bird + additional 23 ppm of XA (108 ppm total); 3) 8.32 x 10^4 SEO/bird + additional 56 ppm of XA (141 ppm total); and 4) 8.32 x 10^4 SEO/bird + additional 77 ppm of dietary XA (162 ppm total). At 28, 29, 38, and 39 d of age, all birds were treated with toltrazuril at 7mg/kg of body weight (BW)....
via drinking water. The infected birds (treatments 2, 3, and 4) received sodium monensin from 36 to 49 d of age. All birds received 85 ppm of XA from 21 to 36 d of age. The infected treatments received higher levels of dietary XA from 36 to 49 d of age, at the levels indicated above.

CHALLENGE

In both experiments, at 21 d of age, the birds from treatments 2, 3, and 4 received an inoculum containing vaccine strains of *Eimeria acervulina* (58%), *E. maxima* (20%), and *E. tenella* (22%) in 1 ml of sterile PBS via oral gavage. The concentration of the inoculum for each experiment was given as described above.

OOCYST COUNTS AND LESION SCORING

Prior to the beginning of the experiment, fecal samples from 5 birds/pen were collected to obtain a baseline measurement of *Eimeria* spp. infection. Coccidia oocysts were quantified by using the McMaster technique as previously described (Long and Rowell 1975). This procedure was performed at 14 d, 21 d, and weekly during the experimental period. Intestinal lesion scoring was conducted in 2 birds/pen on the same days as oocyst counts using the scoring system developed by Johnson and Reid (1970).

PLASMA XANTHOPHYLLS

Starting at 21 d, and then weekly for the duration of the study, 2 ml of blood was collected from the wing veins of 3 birds per pen and mixed with EDTA in a 10:1 proportion. The test tubes were covered with aluminum foil to protect the blood samples from light, and stored in refrigeration for further measurement of plasma XA according to the method reported by Allen (1987).

SKIN YELLOWNESS

Starting at 21 d, and then weekly for the duration of the study, skin yellowness units (b*) were determined in the right lateral apertural area of 10 birds/pen, using a reflectance colorimeter (Model CR-400, Minolta Corp., Ramsay, NJ.) (Muñoz-Díaz et al 2012).

GROWTH PERFORMANCE

All birds were weighed by pen at 21 d and 49 d of age. Feed intake was measured weekly to calculate BWG (g), feed consumption, pigment consumption, and feed conversion ratio (FCR).

APPARENT ILEAL PIGMENT DIGESTIBILITY

In Experiment 2, titanium dioxide was added to the diet at 0.2% and fed to the control and challenged birds from 28 to 35 d of age. At 35 d of age, 2 birds per pen were euthanized via CO₂ asphyxiation and the ileal digesta was collected and frozen, freeze-dried, homogenised, and split into 2 subsamples for measurement of yellow XA by HPLC and titanium dioxide by spectrophotometry according to the methodology described by Ravindran et al (1999).

A feed sample from control and challenged groups was collected and analysed for total XA and titanium dioxide.

STATISTICAL ANALYSIS

Growth performance, b*, and plasma xanthophyll concentration were analyzed by ANOVA for a 4 x 2 factorial arrangement, where the first factor was the coccidia infection at 4 levels, and the second factor was sex at 2 levels. Data for ileal digestibility was analyzed using a 2 x 2 factorial arrangement in which the first factor was the infection level (non-infected or infected), and the second factor was the sex (males or females). Treatment means were compared by Tukey’s multiple comparison procedure (P < 0.05).

Data for skin and plasma pigmentation was fitted to a multiple regression model in which the independent variables were the time of pigment consumption and the coccidia infection level; sex was used as an indicative variable for which 0 = females, and 1 = males (Neter et al 1985). Oocyst fecal count data and the intestinal lesion scores were analyzed using the non-parametric Kruskall-Wallis test. Treatment medians were compared by the Mann-Witney U test (Kuehl 2001).

RESULTS

EXPERIMENT 1

In Experiment 1, from 21 to 49 d of age, BWG in birds from the control group (2,427 g) was significantly greater than in birds from treatment 4 (2,239 g), which was challenged with the highest coccidia dose (P < 0.05). The best FCR was observed in the birds from the control treatment (1.96 kg:kg), which was significantly better from that observed in the treatment with the highest coccidia challenge (2.22 kg:kg). As expected, there was a significant effect of sex on growth performance. In males, BWG (2,538 g), feed consumption (5,110 g) and pigment consumption (434 mg) were significantly greater than in females (2,102 g, 4,589 g, 390 mg, respectively), while FCR was better in males (2.01 kg:kg) when compared to the females (2.18 kg:kg) (table 1).

Between 0 and 28 d posinoculation (21 and 49 d of age), for every d that pigment was consumed, skin yellowness was increased by 1.36b* for both males and females. However, the rate of skin pigmentation was greater in female birds (1.94b*). For every 10,000 SEO that birds received, skin pigmentation decreased by 0.06b* (figure 1). This relationship can be described by the following equation: b*= 2.08...
Table 1. Feed consumption, pigment consumption, body weight gain, feed conversion ratio, skin yellowness units (b*), and plasma xanthophylls of broiler chickens at 49 d of age infected with increasing doses of *Eimeria* spp. oocysts at 21 d of age, Experiment 1.

<table>
<thead>
<tr>
<th>Treatment/ dose of oocysts</th>
<th>Feed consumption, g/ bird</th>
<th>Pigment consumption, mg/bird</th>
<th>BW gain, g/ bird</th>
<th>FCR, kg:kg</th>
<th>b*</th>
<th>Plasma xanthophylls, µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>4.758ª</td>
<td>404ª</td>
<td>2.427ª</td>
<td>1.96ª</td>
<td>17.6ª</td>
<td>39.7ª</td>
</tr>
<tr>
<td>8.32 x 10^4</td>
<td>4.764ª</td>
<td>405ª</td>
<td>2.293ª</td>
<td>2.08ª</td>
<td>13.1ª</td>
<td>25.5ª</td>
</tr>
<tr>
<td>17.82 x 10^4</td>
<td>4.945ª</td>
<td>420ª</td>
<td>2.319ª</td>
<td>2.13ª</td>
<td>11.9ª</td>
<td>19.9ª</td>
</tr>
<tr>
<td>49.92 x 10^4</td>
<td>4.932ª</td>
<td>419ª</td>
<td>2.240ª</td>
<td>2.22ª</td>
<td>13.8ª</td>
<td>25.6ª</td>
</tr>
<tr>
<td>SEM</td>
<td>123</td>
<td>10.4</td>
<td>40.6</td>
<td>0.04</td>
<td>0.72</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Means with different superscripts within a same column differ significantly (P < 0.05).

* = (P < 0.05).

Means con diferentes superíndices en una misma columna difieren significativamente (P < 0.05).

* = (P < 0.05).

Figure 1. Skin yellowness units (b*) *in vivo* from 0 to 28 d posinoculation (21 to 49 d of age) in broiler chickens infected with *Eimeria* spp. at 21 d of age and fed 85 ppm of dietary xanthophylls from Aztec marigold flower, Experiment 1.

Unidades de amarilleamiento cutáneo (b*) *in vivo* del día 0 al 28 posinoculación (21 a 49 días de edad) en pollos de engorda infectados con *Eimeria* spp. al día 21 de edad y alimentados con 85 ppm de xantófilas de flor de cempasúchil, Experimento 1.

- 0.06°oocysts - 1.94°sex + 1.36°days post-infection - 0.03°days posinfection²; R²=85.1%; P < 0.01. Skin yellowness (SY) in live birds at 49 d of age was significantly greater (P < 0.05) in the control group (17.6b*) with respect to treatments 2, 3, and 4 (13.07, 11.9 y 13.8 b*). SY in males was significantly lower than in females (12.8 b* and 15.5 b*, respectively) (P < 0.05) (table 2).

Concentration of PX was reduced by 0.8 µg/ml for every 10,000 SEO given to each bird. (figure 2). The effect of coccidia inoculation on PX concentration can be
explained by the following equation:

\[Y = -318.03 + 29.35 \times DI - 0.82 \times DI^2 + 0.0075 \times DI^3 - 0.8 \times oei + 0.012 \times SOE^2 \]

\[R^2 = 0.70 \]

\[P < 0.001 \]

Plasma xanthophylls (µg/ml) in broiler chickens infected with *Eimeria* spp. at 21 d of age and fed 85 ppm of dietary xanthophylls from Aztec marigold flower from 21 to 49 d of age, Experiment 1.

Means ± SE with different superscripts within a same column or arrow differ significantly (P < 0.01).

Medias ± EE con diferentes superíndices en una misma columna o renglón difieren significativamente (P < 0.01).

Table 2. Skin yellowness units (b*) and plasma xanthophyll concentration (µg/ml) in broiler chickens at 49 d of age after infection with increasing doses of *Eimeria* spp. oocysts at 21 d of age, Experiment 1.

<table>
<thead>
<tr>
<th>Treatment / dose of oocysts</th>
<th>Males (µg/ml)</th>
<th>Females (µg/ml)</th>
<th>Average (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>16.4±1.02</td>
<td>19.0±1.02</td>
<td>17.6±0.72</td>
</tr>
<tr>
<td>8.32 x 10⁴</td>
<td>12.2±1.02</td>
<td>14.0±1.02</td>
<td>13.1±0.72</td>
</tr>
<tr>
<td>17.82 x 10⁴</td>
<td>10.9±1.02</td>
<td>12.9±1.02</td>
<td>11.9±0.72</td>
</tr>
<tr>
<td>49.92 x 10⁴</td>
<td>11.7±1.02</td>
<td>16.0±1.02</td>
<td>13.8±0.72</td>
</tr>
<tr>
<td>Average</td>
<td>12.8±0.51</td>
<td>15.5±0.51</td>
<td></td>
</tr>
</tbody>
</table>

Plasma xanthophyll concentration (µg/ml)

<table>
<thead>
<tr>
<th>Treatment / dose of oocysts</th>
<th>Males (µg/ml)</th>
<th>Females (µg/ml)</th>
<th>Average (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>37.0±3.02</td>
<td>42.9±3.02</td>
<td>39.7±2.1</td>
</tr>
<tr>
<td>8.32 x 10⁴</td>
<td>25.4±3.02</td>
<td>25.5±3.02</td>
<td>25.5±2.1</td>
</tr>
<tr>
<td>17.82 x 10⁴</td>
<td>20.4±3.02</td>
<td>19.4±3.02</td>
<td>19.9±2.1</td>
</tr>
<tr>
<td>49.92 x 10⁴</td>
<td>29.8±3.02</td>
<td>21.3±3.02</td>
<td>25.6±2.1</td>
</tr>
<tr>
<td>Average</td>
<td>28.2±1.5</td>
<td>27.2±1.5</td>
<td></td>
</tr>
</tbody>
</table>

Means ± SE with different superscripts within a same column or arrow differ significantly (P < 0.01).

Medias ± EE con diferentes superíndices en una misma columna o renglón difieren significativamente (P < 0.01).

Figure 2. Plasma xanthophylls (µg/ml) in broiler chickens infected with *Eimeria* spp. at 21 d of age and fed 85 ppm of dietary xanthophylls from Aztec marigold flower from 21 to 49 d of age, Experiment 1.

Xantófilas plasmáticas (µg/ml) en pollos de engorda infectados con *Eimeria* spp. al día 21 de edad y alimentados con 85 ppm de xantófilas de flor de cempasúchil del día 21 al 49 de edad, Experimento 1.

The oocyst count at the beginning of the study was negative for all treatments. After 21 d of age, the control treatment remained negative for oocysts. At 7 d post-inoculation, birds from treatment 4 had significantly greater oocyst counts medians (16.14 x 10⁴ oocysts/g) with respect to treatments 2 or 3 (2.42 x 10⁴ and 4.42 x 10⁴ oocysts/g, respectively). At 14 d post-inoculation, there was a significant
reduction in oocyst count in treatment 4 when compared to the previous week (3.45 x 10^4 oocysts/g). In this treatment, the oocyst count was lower than in treatment 3 (6.98 x 10^4 oocysts/g), but not different from treatment 2 (2.88 x 10^4 oocysts/g). At 21 d and 28 d post-inoculation, the oocyst counts were lower for treatment 2 (1.08 x 10^4 oocysts/g) with respect to treatment 4 (3.96 x 10^4 oocysts/g), but not different from treatment 3 (2.31 x 10^4 oocysts/g) (P < 0.05). The median of intestinal lesion scores in treatment 1 was zero, whereas for treatments 2, 3, or 4, the median lesion score was 1+ or less, and no statistical difference was found between these treatments (P > 0.05), (data not shown).

EXPERIMENT 2

Growth performance was not significantly different between treatments at 49 d of age. However, males had significantly higher feed consumption (5,243 g), BWG (2,565 g), and better FCR (2.05 kg:kg) than females (4,856 g, 2,310 g, and 2.1 kg:kg, respectively) (P < 0.05). Pigment consumption was significantly greater in the males, and it differed across treatments according to the level of dietary XA. Birds from treatments 2, 3, and 4 received higher concentration of dietary XA from 35 to 49 d of age, and their XA consumption was 62, 178, and 223 mg per bird greater than that observed in the birds from the control treatment (table 3).

SY was not different between treatments at 49 d of age (figure 3). Female birds had significantly greater skin yellowness (23.72b*) than male birds (21.47b*). PX concentration was not different between treatments at the end of the study (figure 4), and no significant effect of bird’s sex was detected (P > 0.05).

Apparent ileal XA digestibility was significantly reduced in the birds challenged with coccidia (53.4% in males and 44.2% in females) in comparison with the control group (66.2% in males and 61.3% in females). No effect of bird’s sex was detected (P > 0.05).

DISCUSSION

The reduction in BWG and increase in FCR observed in the birds challenged with the highest coccidia dose is in agreement with previous research findings. Infection with E. acervulina and E. maxima detrimentally affected growth performance 2 to 3 weeks after inoculation (Hein 1968, Preston-Mafham and Sykes 1970). This effect is related to the damage caused by the replication of the parasite in the intestine (Allen and Danforth 1984) that leads to poor digestion and absorption of nutrients (Ruff and Fuller 1975). As expected, the birds that received lower coccidia challenge doses showed intermediate values for BWG and FCR, due to the degree of damage associated with the lower dose of infective oocysts (Stephens et al 1967). In 9-d-old birds infected with 10^5 E. acervulina oocysts, 6.7 x 10^3 E. maxima oocysts, and 10^4 E. tenella oocysts, there was a significant reduction in BW at 5 d post-inoculation (Conway et al 1993).

The rate of XA absorption is affected by coccidia infections and it might not recover to normal levels for up to 20 d post-infection. Absorption of other nutrients like glucose might not recover to normal rates before 14

Table 3. Feed consumption, pigment consumption, body weight (BW) gain, and feed conversion ratio of broiler chickens fed increasing levels of dietary xanthophylls from 21 to 49 d of age and infected with Eimeria spp. oocysts at 21 d of age, Experiment 2.

<table>
<thead>
<tr>
<th>Treatment (ppm of xanthophylls)</th>
<th>Feed consumption, g/bird</th>
<th>BW gain, g/bird</th>
<th>Pigment consumption, mg/bird</th>
<th>FCR, kg:kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>5,044</td>
<td>2,499</td>
<td>428a</td>
<td>2.023a</td>
</tr>
<tr>
<td>108</td>
<td>5,003</td>
<td>2,390</td>
<td>490b</td>
<td>2.097a</td>
</tr>
<tr>
<td>141</td>
<td>5,128</td>
<td>2,404</td>
<td>606c</td>
<td>2.133a</td>
</tr>
<tr>
<td>162</td>
<td>5,024</td>
<td>2,456</td>
<td>651d</td>
<td>2.055a</td>
</tr>
<tr>
<td>SEM</td>
<td>65.4</td>
<td>80.0</td>
<td>5.3</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Sex

Male	5,243	2,565	566	2.052
Female	4,856	2,310	522	2.102
SEM	46.2	56.6	7.6	0.04

Probability

Treatment	NS	NS	*	NS
Sex	*	*	*	*
Treatment x Sex	NS	NS	NS	NS

Means with different superscripts within a column differ significantly (P < 0.05).
Medias con diferentes superíndices en una misma columna difieren significativamente (P < 0,05).
Figure 3. Skin yellowness units (b*) in broiler chickens challenged with 8.32 x 10^4 oocysts of *Eimeria* spp. and fed increasing doses of xanthophylls, Experiment 2.

Figure 4. Plasma xanthophylls (µg/ml) in broiler chickens challenged with 8.32 x 10^4 oocysts of *Eimeria* spp. and fed increasing doses of xanthophylls, Experiment 2.

In Experiment 1, the reduction in skin pigmentation in birds challenged with coccidia was due to the reduction in the absorption of pigment, mainly caused by *E. acervulina* and *E. maxima*. Both *Eimeria* species produce villi sloughing and shortening in the intestinal regions where most of the pigment absorption occurs. On the other hand, *E. tenella* may induce a mild but continuous decrease in skin pigmentation after a coccidia infection. This could explain why birds from treatments 2 and 3 had better BWG than treatment 4. Nevertheless, none of the birds from the infected treatments achieved the same skin pigmentation observed in the non-challenged birds.

d post-infection (Ruff and Wilkins 1980), thus birds may recover their BWG before they regain skin pigmentation after a coccidia infection.
plasma carotenoids due to the blood loss associated with the damage in the cecal epithelium (McDougald and Fitz-Coy 2008). At the end of the study, SY was similar in all treatments, and the only difference was due to bird’s sex. The female birds had significantly higher skin pigmentation, even though the males showed greater pigment consumption. This finding is in agreement with the reports by Sirri et al (2010) and Muñoz-Díaz et al (2012) and it is attributed to higher deposition of subcutaneous fat in the females, which is related to genetic and hormonal factors (Le Bihan-Duval et al 1998, Rance et al 2002).

In both experiments there was a reduction in PX concentration at 8 and 13 d post-infection, which has been reported previously (Júarez et al 2002). This might be due to the greater quantities of merozoites and gametocytes in the intestinal mucosa during this post-infection period (McDougald and Fitz-Coy 2008) that detrimentally influence XA absorption. The reduction in plasma carotenoids in birds infected with Eimeria spp. might also be related with a decline in the synthesis of Apo-I and Apo-III proteins by the enterocyte. These proteins have a major role in the transport of pigment to the liver and other tissues (Allen 1987). Furthermore, E. acervulina reduced the intestinal pH, which negatively affects pigment absorption (Kouwenhoven and van der Host 1969).

The highest PX concentration was found at 29 d of pigment consumption in all treatments. This is in agreement with Tepox (2013), who measured the highest PX concentrations after 28 d of consumption of dietary XA concentrations between 65 and 200ppm.

In Experiment 1, the number of oocysts shed through feces in the birds challenged with the highest infective dose (49.92 x 10⁴ SOE) peaked at 7 d post-inoculation, and declined rapidly afterwards. A similar trend was observed in the intestinal lesions (gross white plaques) caused by E. acervulina for the same treatment. Such a reduction in oocyst shedding might be due to faster development of immunity in response to a more severe challenge. Therefore, the severity of intestinal lesions and oocyst shedding diminished rapidly. On the other hand, the birds challenged with lower oocyst doses required longer time to develop immunity, thus prolonging oocyst shedding. This could explain why the birds challenged with the intermediate oocyst doses had the highest oocyst shedding counts at 21 d post-infection. In addition, feeding very high concentrations of dietary XA sometimes does not result in a significant increase of SY but results in a waste of XA.

No difference was detected in apparent ileal pigment digestibility between males and females, which is in agreement with previous research reported elsewhere (Tepox 2013). The results of the current study suggest that pigment is absorbed in a similar rate in males and females. However, pigment deposition seems to be more efficient in females. In the study reported herein, pigment digestibility was reduced by 15 percent in birds challenged with coccidia with respect to unchallenged birds. Although digestibility of carbohydrates, protein, and amino acids in chickens has been vastly evaluated (Yutse et al 1991, Ravindran et al 1999, Lemme et al 2004), to the author’s knowledge, pigment digestibility has not been reported before, especially as influenced by coccidia infections.

On growth performance. In countries where pigmented chicken is produced, subclinical coccidiosis infections are suspected only based on substandard skin pigmentation. Various studies have demonstrated that levels of plasma carotenoids and skin pigmentation are excellent response variables to evaluate coccidiosis infections due to the sensitivity of these measurements to the disease (Ruff and Fuller 1975, Sharma and Fernando 1975). In this study these parameters were confirmed to be very good indicators of physiological intestinal integrity (Conway et al 1993).

Broiler chickens can reach adequate skin pigmentation levels if higher concentrations of dietary XA are fed for 14 d prior to slaughter age (Muñoz-Díaz et al 2012). In Experiment 2, even though the birds were infected with Eimeria spp., they were able to recover the expected SY after being treated with an anticoccidial drug, and fed with at least 62 mg of XA/bird from 35 to 49 d of age. It is possible that this effect might have been influenced by the high enterocyte turnover rate. During mild coccidia infections (1 x 10⁵ E. acervulina oocysts per bird), the acute phase (4-8 d post-infection) is characterized by a sharp drop in absorption and deposition of pigment, and a recovery phase from 9 to 14 d post-infection (Sharma and Fernando 1975). Regeneration of intestinal epithelium occurs rapidly during mild coccidia infections and can be completed by 10 d post-infection (McDougald and Fitz-Coy 2008). Our results suggest that if the coccidia infection is controlled, and the birds received prompt anticoccidial treatment, absorption capacity and skin deposition of pigment may be fully recovered (Mathis et al 2004). In addition, feeding very high concentrations of dietary XA sometimes does not result in a significant increase of SY but results in a waste of XA.
REFERENCES

Conway DP, K Sasaki, SM Gafar, CN Herbert. 1993. Effects of different levels of oocyst inocula of *Eimeria acervulina*, *E. tenella* and *E. maxima* on plasma constituents, packed cell volume, lesion scores and performance in chickens. *Avian Dis* 37, 118-123.

