When it means the carefully planned restriction of possibilities, control is the opposite of freedom. But what architecture usually does is precisely that: under the goal of giving place to certain predicted activities, design limits movement and, therefore, it blocks or hinders possibilities. As a way to achieve higher degrees of freedom, this house shifts the focus: by welcoming unpredictability it shows a way of designing in which control is rendered unnecessary.
What if we leave behind the obsolete notion of the architect as an engineer/artist, that pompous ideal of a genius that complements his/her technical-positivist certainties with inspiration and sensitivity? And what if we take the architect as an oracle? Projecting is anticipating what will or will not happen, that is, practicing futurology. If we accept this prophetic condition, we face two alternatives: the predictable and the unpredictable.

The predictable
Not only do we know in advance the weather and transport times (including the inconveniences), but we also find predictions everywhere. While economists are confidently foreseeing growth, deceleration or returns, and stockbrokers capitalize future bonds and companies’ values, some architects state that by “combining extensive global experience with robust and sophisticated technologies, we forecast the effects of planning and design decisions on the movement and interaction of people in buildings.”

The unpredictable
First, let’s agree that we are not able to predict the future (something quite obvious, but easy to forget in the face of such current display of certainties). Then, we can transform this future uncertainty into value. As a counterpoint to the overdetermination of life, Hal Foster (2002) raises the need for spaces of maneuver or tolerance – spielraum – where the new, the unpredictable, freedom or creativity can develop.

Control freaks
Jonathan Hill identifies two methods traditionally used by architects to establish hierarchical relationships about users:

The first, the denial of the user, assumes that the building need not be occupied for it to be recognized as architecture and the second, the control of the user, attributes to the user forms of behavior acceptable to the architect. To imply that they can predict uses, architects promote models of experience that suggest a manageable passive and user, unable to transform use, space and meaning (Hill, 2003: 9).
Adrian Forty suggests an even more perverse relationship by understanding the flexibility – usually associated with freedom – as a control mechanism:

The purpose of 'flexibility' within modernist architectural discourse was a way of dealing with the contradiction that arose between the expectation, so well articulated by Gropius, that the architect’s ultimate concern in designing buildings was with their human use and occupation, and the reality that the architect’s involvement in a building ceased at the very moment that occupation began. The incorporation of ‘flexibility’ into the design allowed architects the illusion of projecting their control over the building into the future, beyond the period of their actual responsibility for it (Forty, 2000:143).

As a counterpoint, in his essay “The Death of the Author,” Roland Barthes (1977) questions the author’s authority, recognizes that the movement author-text-reader is never direct or univocal, and states that reading is a creative act through which each reader builds a new text. In turn, from a semiological perspective and based on studies of musical experiences, Umberto Eco suggests in _Obra abierta_ (1992) the possibility of the reader, user, or audience to ‘interpret’ works and ultimately complete them. Finally, Jonathan Hill himself (2003) understands use as a creative activity in which each user builds a new building. Considering these ideas, two strategies apply to design processes: incorporating the possibility of change by deprogramming spaces and offering an active role to architecture’s audiences by getting used to a lack of control.
Deprogramming spaces

Even if living and working or eating and sleeping could justifiably be termed activities, that still does not mean that they make specific demands on the space in which they are to take place - it is the people who make specific demands because they wish to interpret one and the same function in their own specific ways (Hertzberger, 1991:127).

In the Bc house, there is no predetermined space for the family’s living room, the daily dining room, the master bedroom or the service bedroom; there is no office, no children’s playroom or loggia. The project could be defined as a metal shed with a series of enclosures modules inside, and a series of indeterminate spaces between these enclosures. Actually, two categories of volumes were designed: technical-functional volumes (including bathrooms and a small storage/washing area) and neutral volumes (potential places to sleep, store or work). There are also spaces between volumes, which have the highest degree of programmatic indeterminacy. Physically, both the volumes and the spaces between them are defined by specific conditions. That is, there is no mechanical flexibility (things that move and produce change), but flexibility by deprogramming.²

User as executor or performer

By incorporating the possibility of change by indetermination, Bc house users do not relate to architecture in a contemplative way, but in an active one, applying their creativity to the transformation of spaces and the constant redefinition of the building.
LEYENDA / LEGEND

1. Perfil aluminio RPT Technal.
2. Ángulo especial plegado 70 x 180 x 3
3. Canal C10 según cálculo
4. Panel acero prepintado plegado e= 2 mm
5. Aislación - Fisterm e= 55 mm
6. Aislación - Fisterm e= 85 mm
7. Forro 1 (Acero prepintado e= 0,6 mm)
8. Forro 2 (Acero prepintado e= 0,6 mm)
9. Forro 3 (Acero prepintado e= 0,6 mm)
10. Forro 4 (Acero prepintado e= 0,6 mm)
11. Forro 5 (Acero prepintado e= 0,6 mm)
12. Forro 6 (Acero prepintado e= 0,6 mm)
13. Canal Aguas lluvias (Acero prepintado e= 0,6 mm)
14. Pilar PRE según cálculo
15. Pletina según cálculo
16. Conector según cálculo
17. Cielo - Panel CN-6 prepintado
18. Fabreeka structural thermal break
19. Viga metálica VM-1 según cálculo
20. Canal C10 según cálculo
21. Panel Techo CN-4 POL
22. Costanera CT según cálculo
23. Viga P3 según cálculo.
24. Costanera CT1 según cálculo.
25. Panel OSE e= 11 mm
26. Alfeizar aluminio
27. Fe ángulo 150 x 50 x 3
28. Fe canal 150 x 50 x 3
29. Fibrocemento e= 8 mm base cerámica
30. Yeso-cartón ST e= 15 mm
31. Azulejo 50 x 50 mm
32. Sobreloza e= 50 mm
33. Matrices tubería PPR con aislación
34. Malla Acma
35. Malla Acma
36. Foil de aluminio
37. Poliestireno expandido e= 20 mm
38. Radier hormigón
39. Ladrillo fiscal 14 x 28 x 5 cm
40. Entablado 20 x 185 mm
41. Angulo Fe 40 x 40 mm
42. Canalizaciones eléctricas
43. Fe ángulo 125 x 125 x 3 mm
44. Subestructura metálica pletinas 50 x 50 x 3 mm
45. Clip de montaje acero prepintado e= 0,4 mm (175 x 100 mm plegado)
46. Caballet acero prepintado e= 0,4 mm (80 x 800 mm plegado)
47. Esquina ATRIM cuadrado
48. Poliestireno expandido espesor= 50 mm densidad 20 kg x m³
49. Panel OSE e= 9 mm

Corte escantillón / Detail section
E. / S. 1:50

Corte transversal / Cross section
E. / S. 1:100
Isométrica modelo de prefabricación de pieza metálica / Isometric metal piece prefabrication model
S. E. / N. S.

Esquema volumetría interior / Inner modules sketch
S. E. / N. S.
These future modifications can occur because of three design decisions. First, all the neutral volumes have the same dimensions; in addition, two bathrooms have the same distribution and dimensions. This homogeneous infrastructure – non-hierarchical – grants versatility and allows equalizing freedom of the agents that participate in the house. Second, unlike the volumes, the spaces between them have different sizes and locations, enabling different kinds of groupings among participants. Finally, due to the house’s extension, it is possible to obtain degrees of privacy given by distance and not only by closed enclosures.

Domestic social settings

With the ac house, we questioned the notion of traditional family as the only social organization basis for the design of the home, replacing it with the possibility of granting different configurations for the house’s participants. As an anecdote, the house is currently shared by a couple, two children and a household worker – to which is added the sporadic visit of out of town relatives. Within this specific configuration, the main bathroom and the service bathroom are exactly the same. ARQ
Arquitecto / Architect: Rodrigo Valenzuela Jerez
Colaborador / Collaborator: Juan Pablo Valenzuela
Ubicación / Location: Colina, Región Metropolitana, Chile
Cálculo estructural / Structural engineering: Luis Ignacio Correa
Construcción / Construction: Constructora Leman - Helmuth Meier
Instalación sanitaria / Mechanical engineering: Liliana García
Instalación eléctrica / Electrical engineering: Juan Carlos Morales
Clima / Climate system: Jorge Labarthe
Sistema constructivo-materialidad de estructura / Construction system-materials: Estructura metálica, ladrillo / Metal structure, brick
Materialidad de terminaciones interiores y exteriores / Interior and exterior finishing materials: Hormigón pulido, madera, cristales, marcos aluminio / Concrete, wood, glass, aluminum frames
Presupuesto / Budget: 1160 usd/m²
Superficie construida / Built area: 209 m²
Superficie de terreno / Plot area: 5000 m²
Año de proyecto / Project year: 2016
Año de construcción / Construction year: 2017
Fotografías / Photographs: Sebastián Mejía
Rodrigo Valenzuela Jerez
< rvalenzuela@udla.cl >

Architect, Universidad de Chile (2005), Master of Arts, Visual Arts Major, Universidad de Chile (2011), and Msc in Advance Architectural Design, Columbia University usa (2014). Between 2005 and 2010 co-leads Murúa-Valenzuela architects. Has been awarded the Grand Biennial Prize, xvii Chilean Architecture Biennial for the co-design of Licantén Public Library (2010). Since 2014 has developed architecture projects through Estudio ro - (E)Studio Futur@ and rvjaa . Has been an assistant professor at Columbia University usa (2014-2015), visiting professor at Universidad de Chile (2012) and assistant professor at Universidad Diego Portales (2008-2010). He is currently Associate Professor and Coordinator of Design Area at Universidad de las Américas, Chile.