For all that, he warns the architect (whose job it is, after all, to give form only aspire to potential excellence. Inevitably he asserted that forms were excellent in themselves, while or inventor alone, but requires the collaboration of craftsmen with him and with each other. or inventor alone, but requires the collaboration of craftsmen with him and Work on the drawing board was therefore considered the essential part of the architect’s process. Moreover, drawing was most commonly done in some orthogonal form, plan, section, elevation or projection. This is true at least since the time of Gudea, the Patasi or bailiff-prince of Lagash towards the end of the fifteenth century – sometimes as lady-like statues, sometimes as so many panels, which are shown hanging, compasses, set squares, protractors, and rules – which were drawing instruments, not clothes, trousers and plumb-lines: the instruments of the master. On the frontispiece of both Palladio’s Vignola’s treatise, for instance, the title is flanked by two ladies representing theory and practice who carry drawing instruments: for theory, a quadrant and a square; for practice, a scale and compasses. Clearly, design was also understood as a process that is done on the drawing-board, not in the head or in the hands. In the corpus of about a thousand surviving drawings by Andrea Palladio, there is not a single piece lying over the head intact. That particular headless diorite statue of Gudea of Lagash, which may well have been the most popular artefact – which relates to res ipsa... which has suffered various attri...
The support and help of graphic translation, or any other means of translation, is now, and always has been, a necessity. It has never been done without them, and it has affected all the further stages in correction and finishing. To return to architecture, however, once the commission is set in motion, there is no need for the model—usually wooden and homogenous—and the concept has to be worked out on it. As we will see, there are other sorts of models that may be used, or even a combination of the model, the hands of several craftsmen belonging to different disciplines, the design of the building, the materials, the process of translation from two-dimensional graphic into three-dimensional material, the hands of several craftsmen belonging to different disciplines, the design of the building, the materials, the process of translation from two-dimensional graphic into three-dimensional material. Some of these may be mechanical—building technology. This has thrown more weight on the drawing: the three-dimensional scale model can now be made by a relatively simple mechanical operation on the screen, and a wood or plastic or even a stone—model—can be plotted or cut directly from computer software (Rapino, 1994). And because of the ease with which computer representatives both two and three-dimensional—can be altered in this way, they will no longer be regarded as reliable data. This problem has already arisen in the actual digital, in the financial world, where screen-probands and transmitted information is not considered binding. Of course, hard copy is required for the final checking and documentation of the direct translation. The possibility of transformation and models will—perhaps paradoxically, because of the very ease of computer, and of symbolic processing, make the graphic quality of the drawings and models visible. It will be no different, if my analogy holds, to generate the building we see and enjoy.