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Allometric scaling of biological rhythms in mammals
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ABSTRACT

A wide spectrum of cyclic functions in terrestrial mammals of different size, from the 3-gram shrew to the 3-
ton elephant, yields an allometric exponent around 0.25, which is correlated – as a kind of common
denominator – with the specific metabolic rate. Furthermore, the applicability of these empirical findings
could be extrapolated to chronological events in the sub-cellular realm. On the other hand, the succession of
growth periods (T98%) until sexual maturity is reached also follows the 1/4 power rule. By means of
Verhulst’s logistic equation, it has been possible to simulate three different biological conditions, which
means that by modifying the numerical value of only one parameter, revertible physiological and pathological
states can be obtained, as for instance isostasis, homeostasis and heterostasis.
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INTRODUCTION

Since Lambert and Teissier (1927), a
mathematician and a zoologist, introduced
the dimensional analysis in the biological
sciences with the aim to obtain new
relationships among different variables,
such as heart rate, respiratory rate and
specific metabolic rate of mammals of
different size, the subsequent advancement
was made by Julian Huxley (1932) by
introducing the allometric equation (Y =
a·Mb) in Comparative Physiology, where: Y
= any biological variable; a = an empirical
parameter; M = body mass; and b =
characteristic allometric exponent.

On the other hand, several theories of
biological similarity, which are based on
dimensional analysis of the physical
sciences (MLT-system, where M = mass, L
= length, and T = time), are able to predict
satisfactorily the numerical values of the
above-mentioned empirical al lometric
exponents (b) (Günther, 1975a; 1975b;

Günther & Morgado, 1984; 2003a; 2003b;
2004; Günther, González & Morgado,
1992; Günther, Morgado & Jiménez, 2003).

There is little doubt, that cyclic activities
permeate almost all biological functions, as
shown in Table I and Figure 1, comprising a
wide spectrum, from the activity of
cytochrome oxidase – the master reaction of
oxidative metabolism – (West et al., 2002) to
the frequency of sleep cycles (Zepelin &
Rechtschaffen, 1974), since the logarithms
of parameter a vary from +4.50 to -3.18,
corresponding to 7.68 decades, or to a 47.86
million-fold difference.

The common denominator of al l
biological rhythmcities may be the “specific
metabolic rate” of each organism (Schmidt-
Nielsen, 1997), which has been defined as
total oxygen consumption per unit body
weight and per unit of time.

Since ancient times, heart rate (HR) has
been the paradigm of biological
rhytmicit ies, part icularly in human
medicine, where any abnormality of the
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TABLE I

Seven cyclic functions (given in Hertz) of mammals
(data from Peters, 1983; Calder, 1984)

Item Function Parameter (log a ) Exponent (b) References

1 Flicker-fusion-frequency 1.75 - 0.25 Günther & Morgado (2004)

2 Muscle twitch frequency 1.72 - 0.21 Syrovy & Gutman (1975)

3 Heart rate 0.60 - 0.25 Stahl (1967)

4 Respiratory rate - 0.05 - 0.26 Stahl (1967)

5 Gut beat rate - 0.45 - 0.31 Adolph (1949)

6 Blood flow turnover - 1.32 - 0.21 Stahl (1967)

7 Sleep cycle frequency - 3.18 - 0.24 Zepelin & Rechtschaffen (1974)

A common Specific metabolic - 0.15 - 0.25 Schmidt-Nielsen (1997)
reference rate (VO2·kg-1·h-1) - 0.15 - 0.25 Schmidt-Nielsen (1997)
system

Figure 1: The inverse correlation between the logarithms of eight chronological events (given in
Hertz) and the logarithms of the corresponding body weights, given in kilograms.
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arterial pulsations is a matter of concern.
The corresponding allometric equation (HR
= 202·W-0.25), as illustrated in Table II is
applicable to a wide spectrum of terrestrial
mammals, from the 3-gram shrew to the 3-
ton elephant, which represents a million-
fold body weight (W) difference, despite
the fact the heart as a pump is
morphologically and physiologically almost
identical in all mammals. More recently,
West et al. (2000) were able to extrapolate
these conclusions to the sub-cellular realm
(see Table II).

In sum, representative theories and
experiments have confirmed the paramount
importance of Fraser’s (1966) dictum:
“Cycle repetition is the rule of living”.

BIOLOGICAL TIME AND ITS LOGISTIC EQUATION

The study that follows intents to show that,
by means of Verhulst’s logistic equation,
known since 1845, it has been possible to
obtain three different solutions for biological
time events: 1) a constant output signal with
only one attractor, which can be defined as
“isostasis” in the sense of Claude Bernard’s

“fixité du milieu intérieur”; 2) a steady state
of rhythmic output with two attractors,
which resembles Walter Cannon’s concept
of “homeostasis”, and finally 3) a “chaotic”
outcome without any attractor, which can be
defined as “heterostasis” in the sense of
Hans Selye (1973).

We must emphasize that the Verhulst’s
logistic equation (Figure 2) yields: 1) a set
of successive numerical solutions, which
may be equal or very similar when the
equation X n+1 = f (Xn) = a·Xn(1-Xn) or else,
when X n+1 = Xn ± DX, where DX is a small
difference, which can be of positive or
negative sign, as commonly happens with
any physiological variable as a function of
time, and 2) three significantly different
behaviors, depending upon the numerical
value of parameter (a), because: i) when the
parameter (a) is less than 3.0, the result will
be a constant value (isostasis); ii) when
parameter (a) varies between 3.0 and 3.45,
the output will be oscillatory (homeostasis);
and finally, iii) when parameter (a) is
greater than 3.45, the resulting values will
be predominantly of chaotic nature, which
is equivalent to the “heterostasis” of Selye
(1973).

TABLE II

Heart rate (min-1) in mammals of different body weights (kg) and chronological
characteristics of sub-cellular items (in Hertz). Data from West et al. (2002)

Item Macroscopic Weight (W) Log period Log frequency Heart rate (min-1) Estimated
and microscopic in kg f(W1/4) f(W-1/4) HR = 202·W-1/4 turnover

entities (W in kg) number (Hz)

1 Blue whale 100,000 1.25 - 1.25 11.4 -

2 Elephant 3,000 0.87 - 0.87 27.3 -

3 Man 70 0.46 - 0.46 70 -

4 Shrew 0.003 - 0.63 0.63 862 -

5 Mammalian cell 10-8 - 2.0 2.0 - 1.0

6 Mitochondria 10-12.5 - 3.125 3.125 - 1,333

7 Cytochrome-oxydase 10-18.5 - 4.625 4.625 - 42,170
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Concerning the f irst theoretical
alternative or the “isostasis” phenomenon
of Claude Bernard (Figure 3), it is note
worthy that the empirical findings have
confirmed the validity of Bernard’s
theoretical assumption, because the
electrolyte concentrations in the plasma of
all terrestrial mammals (in accordance to
data from Altman and Dittmer, 1974) yield
the following figures (mean ± SEM): a)
sodium: 141.41 ± 2.2; b) chloride: 105.72 ±
1.22; c) potassium: 4.07 ± 0.18; d) calcium:
4.91 ± 0.12.

Surprisingly, isostasis in mammals could
be extrapolated to each individual,
irrespective of their body size. Furthermore,
the periodicity of the homeostatic processes
is restricted to narrow ranges, whereas in

Figure 2: A) Feedback circuit of a biological
iterator (Xn+1 = a· Xn·(1 – Xn)). The first cycle
starts when key (k) introduces the seed (S) into
the circuit.
B) Oscillatory response of the iterator in the
homeostatic range, when parameter a = 3.2.
C) Output of the iterator in the chaotic realm
(heterostasis), when parameter a = 4.0.

the case of heterostasis, the oscillations are
beyond the normal ranges for each specific
function. They are of greater amplitude and
occur in irregular patterns, which is
characteristic of pathology.

Figure 3: Response of the iterator in isostasis,
irrespective of the original value of the seeds (s1

– s3). A numerical example of “isostasis” is
given in the text.

THE ALLOMETRY OF GROWTH

Another distinctive feature of living beings
is their capacity to increase both in size and
in number, either as single individuals or as
a population. It is of great interest that
Calder (1984) summarized the meaning of
growth as follows: “Growth is, after all, a
physiological process, both during post-
natal life, maturation, maintenance and
aging, periods which should be regarded as
a continuum.” In Table III, five biological
growth periodicit ies are defined in
accordance with allometric criteria, and in
almost all instances, an allometric exponent
(b) around 0.25 was obtained. As shown in
Table III, items 2 and 3, a succession of
generations in a given species, means a
series of T98 growth periods, where T98 is
the time span required to reach 98% of
reproductive maturity (item 4, Table III), as
illustrated in Figure 4. The history of a
species is precisely equivalent to the
succession of T98 periods, which is just the
substrate of natural selection.
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TABLE III

Growth times and periods that are associated with phases of reproduction
(data from Calder, 1984; Peters, 1983)

Item Independent Body weight Parameter (a) Exponent (b) Determination
variable range (kg) in days; the value ± Sb coefficient (r2)

of (a) when
W = 1 kg

1 Gestation time 0.017 - 2750 65.3 0.258 ± 0.032 0.72

2 50% growth (T50) - 130.5 0.25 -

3 98% growth (T98) - 447 0.26 -

4 Reproductive maturity - 274 0.29 0.57

5 Maximum longevity in captivity - 4234 0.20 0.59

DISCUSSION

The present study dealt with the quantitative
analysis of the comparative physiology of
terrestrial mammals, from the 3-gram shrew
to the 3-ton elephant – a million-fold body
weight difference – which can be extrapolated
to the 100-ton whale.

From the chronological analysis of
rhythmic phenomena in mammals, a general
1/4-power of body weight could be obtained

Figure 4: Sequence of three growth periods, with indication of the relative body weight given as a
percentage of the adult value (100%). As shown in Table III, items 3 and 4, means that reproductive
maturity is attained at the 98% growth condition.

from lifetimes, growth periods, heart and
respiratory rates to sleep cycles. On the
other hand, West and colleagues (2002)
extrapolated the above-mentioned power
law, to sub-cellular periodicities of redox
cycles of mitochondrial oxidases, whereas
Sernetz and colleagues (1985) correlated
the specific metabolic rate with the fractal
nature of biological times.

Verhulst’s logistic equation, from 1845,
yielded a sequence of self-similar results
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through a feedback circuit which is governed
by a single parameter, whose numerical value
determines the outcome; in one instance, the
final result was “isostasis” (C. Bernard); in
the other, “homeostasis” (W. Cannon), and
finally, a pathological sequence could be
simulated as “heterostasis” (H. Selye).

Finally, growth phenomena could be
analyzed from a quantitative point of view,
while two types of increasing size of an
organism should be distinguished, one,
during the intrauterine gestation period
(Table III, item 1), and second, the post-
natal growth until the 98% of adult size
(Table III, item 3) is reached. In both cases,
the allometric exponent varies around b =
0.25. The survival of a given species
depends upon the sequence of T98
periodicities until in each instance sexual
maturity is achieved.
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