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Central actions of somatostatin in the generation and
control of breathing
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ABSTRACT

The neuropeptide somatostatin is involved in many functions in the central nervous system as well as in the
periphery. When it is centrally injected, an irreversible apnea is often developed. In the present review, we
discuss the effects of somatostatin as the result of its actions at three levels of the respiratory neural network:
a) by modulating the output of cranial or spinal motoneurons; b) by altering the genesis of the respiratory
rhythm in the brainstem; and c) by regulating the chemosensory drive input into the respiratory pattern
generator.
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The respiratory pattern generator (RPG) is a
neuronal network localized in the brainstem
responsible for generating the pattern of
repetitive motor activity necessary for
breathing. The efferent pathway of the RPG
commands the cranial and spinal
motoneurons that innervate the respiratory
muscles. The RPG integrates information
from many areas of the CNS, including the
cortex, hypothalamus, cerebellum, pons and
medulla, and receives information about
basic sensory modalities from pulmonary
mechanoreceptors as well as central (Nattie,
1999) and peripheral chemoreceptors
(Zapata & Larraín, 2005). As the result of
these multiple interactions, breathing is a
highly regulated process constrained by
allometric (Günther & Morgado, 2003) and
optimization rules (Tehrani, 2003).

Somatostatin (SST) was first identified
as a hypothalamic factor, which inhibits
the release of growth hormone from
anterior pituitary (Brazeau et al., 1973).
Both SST and its receptors (SSTR) were
subsequently found distributed in several
extra-hypothalamic areas of the central

nervous system (Finley et  al . ,  1981;
Johanson et al., 1984; Moller et al., 2003)
and the periphery (Lewin, 1992) in the
adult  as  well  as  in the developing
organism. The widespread distribution of
SST suggests that SST is involved in
multiple biological functions. The site and
dose of SST administration are critical for
revealing its respiratory effects. In contrast
to earlier works (Niewoehner et al., 1983),
Kalia et al. (1984) found that injection of 6
nmol of SST in the cisterna magna of
anaesthetized rats produces apnea that was
usually irreversible.  Actual evidence
shows that SST may affect respiration via
mechanisms operating at three distinct
levels of the central respiratory network:
a) by modulating the output of cranial and
spinal  motoneurons;  b)  by al ter ing
respiratory rhythmogenesis  in the
brainstem; and c)  by regulat ing the
chemosensory drive to the RPG. We will
summarize some of the evidence on the
localization of SST in the brainstem before
we review the evidence on central actions
of SST at these three levels.
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SOMATOSTATIN LOCALIZATION IN THE

BRAINSTEM RESPIRATORY GROUPS

Mammalian forebrain and hypothalamic
areas contain a relatively large amount of
SST, while lower brainstem contains a small
amount of SST. In the brainstem, SST can be
detected in somata and terminals of several
nuclei related to the central respiratory
groups (Kalia et al., 1984; Leibstein et al.,
1985; Llona et al., 2001; Stornetta et al.,
2003), the auditory central pathways (Wynne
et al., 1995; Kungel & Friauf, 1995) and
brainstem nuclei related to autonomic
regulation, like the parabrachial nucleus or
the nucleus of tractus solitarius (NTS)
(Block & Hoffman, 1987; Saha et al., 2002).
As other neuropeptides (Najimi et al., 2001),
the level of expression of SST varies with
the age of the animal. Numerous SST-
positive structures in the lower brainstem
have been detected in the neonatal rat, but
not in the adult rat (Shiosaka et al., 1981;
Fitzpatrick-McElligott, et al., 1991; Kungel
and Friauf, 1995).

Using in situ hybridization, Shiraishi et
al. (1993) were able to detect SST mRNA in
the brainstem of adult rats in the same areas
where it is found in the neonatal period,
suggesting that some expression of the gene
is present in the adult stage. Also, SSTR
show transient appearance in several brain
regions, for example SSTR4 (SST receptor
type 4) is expressed transiently and
successively replaced by SSTR1 in the
brainstem of the neonatal rat (Wulfsen et al.,
1993). The first report that SST was present
in neurons and terminals of the pre-
Bötzinger complex, a nuclei localized in the
ventrolateral medulla and proposed to be the
site of respiratory rhythm generation
(Feldman et al., 2003; Smith et al., 1991),
was obtained in the newborn mouse (Llona
et al., 2001). Recently, Stornetta et al. (2003)
showed in the adult rat that SST-positive
neurons in the pre-Bötzinger complex also
contain glutamate as neurotransmitter. It is
possible that pre-synaptic SST actions could
play a role modulating glutamate release in
the pre-Bötzinger. In other glutamatergic
terminals, like cerebrocortical nerve endings,
SST through activation of pre-synaptic sst2
receptors inhibits the adenylyl cyclase-

protein kinase A pathway, which, in turn,
reduces the glutamate release (Grilli et al.,
2004).

The temporal and spatial patterns of
expression of SST and SSTR suggest that
SST plays a role in specific brain areas
during restricted and precise periods of the
development of the nervous system. In has
been described that depletion of SST during
early development affects the branching
density of the dendrites in the rat’s lateral
superior olive, an auditory brainstem nucleus
(Kungel et al., 1997), suggesting that the
peptide can exert a trophic role during the
neurogenesis and synaptogenesis of the
lower brainstem. On the other hand, an
abnormal persistence of the density of
binding sites to SST at high levels have been
detected in the brainstem of infants who died
from Sudden Infant Death Syndrome (SIDS),
the primary cause of death in human infants
aged between 1 and 12 months in
industrialized countries (Carpentier et al.,
1998). In this syndrome, a defect in the
neuroregulation of the cardiorespiratory
system is strongly suspected (Kinney et al.,
2001) and a high frequency of episodes of
prolonged central apneas have been reported
in infants who subsequently died of SIDS
(Schechtman et al., 1991).

As far as localization is concerned, SST
may exert a role in the generation and or
control of respiration because both the
peptide and its receptors are present in the
respiratory groups of the brainstem.

ACTION OF SST ON RESPIRATION

As mentioned before, Kalia et al. (1984)
found that injection of SST in the cisterna
magna of anaesthetized rats produces apnea
that was usually irreversible. The site of
action of SST was suggested to be the
dorsal respiratory neurons. When the
injection site was more clearly defined, it
was found that SST injected in the
ventrolateral medulla, in particular in the
nucleus paragigantocellularis lateralis of
cats and rats, consistently caused apnea
(Yamamoto et al., 1988; Chen et al., 1990)
suggesting that SST contributes to the
central regulation of respiration acting at
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some critical point within the ventral
respiratory group. In the rat, SST and
Substance P have antagonistic effects on
respiratory regulation in medulla oblongata
(Chen et al., 1991). SST-induced apnea can
be prevented by central and peripheral
administration of an opiate receptor
antagonist, like naloxone (Harfstrand et al.,
1985), suggesting that SST-induced apnea
is mediated by activation of opioid
receptors. Aspartic acid depression of
ventilation has been suggested to be due to
release of SST, but it is not clear if this is a
peripheral or central action (Schenker &
Hoffman, 1996).

SST INTERACTION WITH MOTONEURONS

For a direct interaction between SST and
motoneurons, the presence of SSTR located
on the motoneurons is a requisite. There are
some pieces of evidence pointing in this
direction. For example, SSTR2 has been
detected in rat nucleus ambiguous and
hypoglossal motor nucleus (Breder et al.,
1992). In rat lumbar motoneurons, SSTR3
has been detected (Segond von Banchet et
al., 1999), and by in situ hybridization, the
mRNA for SSTR3 was visualized in
motoneurons of cranial nerves, including
the facial and the hypoglossal nuclei
(Señaris et al., 1995). However, binding of
SST could not be detected (Reubi &
Maurer,  1985; Uhl et al. ,  1985) by
autoradiography at this level. Low to
moderate concentrations of SST-positive
nerve endings are found surrounding the
motor cranial nerve nuclei (Johansson et al.,
1984). Although SSTR- and SST-positive
nerve endings have been described in the
respiratory motoneurons of the brainstem,
and SST hyperpolarizes vagal motoneurons
(Oomura & Mizuno, 1986), the possibility
that SST-induced apnea is due, in part, to
interaction with the cranial motoneurons
remains to be elucidated.

INTERACTION WITH RPG

With regard to the generation of the
respiratory rhythm, SST-positive neurons

could be part of the network that generates
the respiratory rhythm or be
neuromodulators.  SST is present in
inspiratory neurons of the pre-Bötzinger
complex (Llona et al., 2001; Stornetta et al.,
2003), the proposed site of respiratory
rhythm generation. This localization
suggests that SST is in neurons belonging
to the RPG. However, SST is not essential
for the generation of the rhythm, because
null mutant mice lacking somatostatin seem
healthy, fertile,  and superficially
indistinguishable from their heterozygous
and wild-type littermates (Zeyda et al.,
2001). The presence of SSTR in the pre-
Bötzinger complex has not been
determined, and the projections of the SST
neurons into this nucleus are not yet
defined.

INTERACTION WITH CHEMOSENSORY DRIVE

The SST administration in the ventrolateral
medulla resulted in a blunted ventilatory
response to hypoxia and hypercapnia (Chen
et al.,  1990). Moreover, hypoxia and
hypercapnia shortened the latency of SST-
induced apnea, indicating an interaction
between chemoreception and SST actions
(Harfstrand et al., 1984).

In humans, intravenous infusion of SST
greatly reduces the ventilatory response to
hypoxia without changing the ventilatory
response to hypercapnia (Maxwell 1986;
Filuk 1988). In both studies, a central effect
cannot be discarded because very high
doses were used and some SST can cross
the brain blood barrier (Banks et al., 1990).
SST has been localized within nerve fibers
innervating the arterial chemoreceptor
(Kummer, 1989; Kameda, 1989) and
inhibits whole cell  calcium currents
recorded from chemoreceptor glomus (type
1) cells from rat carotid bodies (e Silva,
1995). These results, together with those of
Pedersen et al. (1999), suggest that the most
likely site of action of SST on hypoxic
ventilatory response is the carotid body. On
the other hand, under chronic hypoxia, SST
gene expression is unchanged (Mosqueira
et al., 2004), suggesting that it most likely
does not contribute to the functional
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changes induced by hypoxia (Del Río et al.,
2004). The ventilatory response to CO2 was
not modified by peripheral administration
of octreotide, an analogue of SST (Cao et
al., 1998), pointing to a central interaction
between SST and chemoreception.

In vitro preparations of the central
nervous system have been useful for
studying mechanisms of breathing control by
central chemoreceptors (Nattie, 1999;
Eugenín et al., 2001). Using the neonatal
mouse medullary-spinal cord preparation, we
showed that the interaction between SST and
hypercapnia occurs at the central level
(Llona et al., 2004). Somatostatin decreased
both frequency and amplitude of fictive
respiration. The inhibition of respiratory
frequency was greater during acidification of
the medium than in basal conditions. SST
depression of respiration does not seems to
depend on the basal state of the respiratory
network, because it was not correlated with
the basal frequency of the preparation or
with the age of the pup from which the
brainstem was obtained. At the present time,
it is unclear how SST and the chemosensory
input may interact within the brainstem to
regulate respiration. In our preparation,
influences from pontine respiratory groups
or peripheral chemoreceptors were absent.
Therefore, the actions of SST on respiration
are probably at the level of the dorsal and/or
ventral respiratory groups of the medulla.

In addition, there is some interaction
between chemoreceptors and SST in the
control of the tracheal wall tension. The
tracheal tension decreased as well as the
phrenic nerve activity when SST was applied
to the surface of ventral medulla in animals
that were hypercapnic (Haxhiu et al., 1993a).
Also, application of SST to the surface of the
ventral medulla attenuated the response to
hypoxia, decreasing the tracheal pressure
response. Both effects were abolished after
muscarinic blockade suggesting an indirect
effect of the peptide. Thus, SST
administered in the surface of the ventral
medulla modulates parasympathetic outflow
to the airway smooth muscle.

The origin of SST in the surface of the
ventral medulla may be, at least in part, in
the paraventricular and lateral hypothalamic
areas that project to the ventrolateral

medulla including the airway-related vagal
preganglionic neurons (Haxhiu, 1993b).

In summary, these results point to a
interaction between SST and central
chemoreception in the control of breathing.
Several nuclei have been demonstrated to
have chemosensory properties (Nattie,
1999), and they can be considered as
candidates for localizing the neural circuits
where these interactions take place. The
SST effects on hypoxic response are most
probably of peripheral origin (carotid
bodies), while on the contrary, the SST
interaction with the chemosensory drive
takes place somewhere at the ventral
respiratory group of the brainstem.

CONCLUSIONS

SST acting at different levels within the
central nervous system contributes to the
control of respiration. Although this
neuropeptide is not crucial for rhythm
generation, it is involved in the modulation
of the respiratory rhythm. This modulation
is in part related to the interaction between
SST and central chemoreception, through
which, SST can influence an important
tonic input driving respiration.
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