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Abstract 

Background:  Pectinase enzymes catalyze the breakdown of pectin, a key component of the plant cell wall. At 
industrial level, pectinases are used in diverse applications, especially in food-processing industry. Currently, most of 
the industrial pectinases have optimal activity at mesophilic temperatures. On the contrary, very little is known about 
the pectinolytic activities from organisms from cold climates such as Antarctica. In this work, 27 filamentous fungi 
isolated from marine sponges collected in King George Island, Antarctica, were screened as new source of cold-active 
pectinases.

Results:  In semi-quantitative plate assays, 8 out 27 of these isolates showed pectinolytic activities at 15 °C and one of 
them, Geomyces sp. strain F09-T3-2, showed the highest production of pectinases in liquid medium containing pectin 
as sole carbon source. More interesting, Geomyces sp. F09-T3-2 showed optimal pectinolytic activity at 30 °C, 10 °C 
under the temperature of currently available commercial mesophilic pectinases.

Conclusion:  Filamentous fungi associated with Antarctic marine sponges are a promising source of pectinolytic 
activity. In particular, pectinases from Geomyces sp. F09-T3-2 may be potentially suitable for biotechnological applica‑
tions needing cold-active pectinases. To the best of our knowledge, this is the first report describing the production of 
pectinolytic activity from filamentous fungi from any environment in Antarctica.
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Background
Among the macromolecules that compose the plant cell 
wall, pectin is one of the most abundant and complex. 
Pectin is a family of diverse polysaccharides that com-
prise, at least, seven structural elements, being homoga-
lacturonan, xylogalacturonan, rhamnogalacturonan I 
and rhamnogalacturonan II the most widely known [1, 
2]. From a chemical point of view, pectin is composed 
by a main chain of galacturonic acid residues bound by 
β (1 → 4) linkages (homogalacturonan), or by a mix of 
galacturonic acid and rhamnose (rhamnogalacturonans) 
or galacturonic acid and xylose (xylogalacturonan). In 

turn, the main chain can be substituted by a variety of 
molecules, such as methyl, ethyl, and diverse sugar moie-
ties (arabinose, rhamnose, galactose, and others) [3].

According to its complex structure, biodegradation of 
pectin requires a pool of several enzymes, collectively 
named as pectinases. These pectinases include pectin 
methyl esterases, pectin acetyl esterases, polygalactu-
ronases, polymethylgalacturonases, polygalacturonate 
lyases, polymethylgalacturonate lyases, rhamnogalactu-
ronase, arabinases and xylogalacturonases [2].

Pectinases have great biotechnological potential, 
mainly in the food industry. Pectinases are used to 
remove the suspended pectin from raw juices in fruit 
juices processing, thus avoiding the increased viscosity 
that inabilities the filtering process. In winemaking, in 
addition to the improvement of mash filtering, pectinases 
can be also used to improve the juice extraction from 
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the grapes and to release compounds responsible for the 
color and aroma in wines [4, 5].

Among the microorganisms able to degrade pectin, 
the filamentous fungi are among the most efficient. They 
have demonstrated a great capability of secreting a wide 
range of pectin-degrading enzymes, and currently, most 
of the commercial pectinolytic enzymes available are 
produced by filamentous fungi, particularly from genera 
Aspergillus, Trichoderma and Penicillium [1, 6, 7].

By far, most of the commercial pectinases are of meso-
philic origin, and they account up to 40% of the enzymes 
used in food industry [2]. These mesophilic commercial 
pectinases have optimal temperatures between 40 and 
60 °C [2]. However, there are processes where pectin deg-
radation is necessary at lower temperatures. For example, 
the clarification of the mash for the production of white 
wine and pisco is performed at 15 °C. This low tempera-
ture is required to avoid the propagation of microbiota 
and to keep intact the aromatic molecules, which confer 
the organoleptic characteristics to these products. Recent 
investigations indicate that commercial pectinases with 
mesophilic characteristics do not work efficiently during 
wine fermentations at low temperatures [8]. Thus, in the 
last years the interest to seek cold-active pectinases (with 
optimal temperatures below 40  °C) is increasing. These 
cold-active pectinases potentially could replace the exist-
ing mesophilic commercial enzymes in low-temperature 
processes. Microorganisms isolated from cold regions of 
the Earth are able to produce cold-active pectinases, and 
to date, several yeasts and some bacteria with this ability 
have been isolated from samples of Argentinian Patago-
nia, Himalayan regions, Iceland and Japan [2]. On the 
contrary, the information about filamentous fungi pro-
ducing cold-active pectinases is rather scarce. Although 
in literature there are several papers claiming for the 
production of cold-active pectinases or cold-active pec-
tinolytic activities by filamentous fungi (both from mes-
ophilic and cold-loving fungi), almost all of them report 
the production of pectinolytic enzymes with optimal 
activities at 40–45  °C [9–14]. Thus, to the best of our 
knowledge, pectinases from filamentous fungi with opti-
mal activity lower than 40 °C have been identified only in 
Botrytis cinerea [14].

Antartica is one of the most pristine, remote and cold 
regions in the Earth. Thus, this place seems suitable for 
the prospection of new microorganisms producing cold-
active enzymes, including pectinases. Bacteria and yeasts 
able to degrade pectin have been isolated from differ-
ent Antarctic environments [16–19], but remarkably, to 
the best of our knowledge, there are no studies report-
ing the successful production of cold-active pectinases 
from filamentous fungi isolated from any environment in 
Antarctica.

Recently, we have obtained cultivable filamentous fungi 
from Antarctic marine sponge samples [20]. We hypoth-
esize that these fungi could be producers of cold-active 
enzymes, including pectinolytic activity. Therefore, the 
objective of this study was to evaluate if these Antarctic 
filamentous fungi can produce cold-active pectinases.

Methods
Fungal strains
The fungal strains used in this work are described in 
Table  1. All of them were previously obtained from 
Antarctic marine sponges [20] and belong mostly to 
Geomyces sp. and Pseudogymnoascus sp., which are 
recognized cold-loving organisms [21]. Most of them 
are unidentified species (see “Discussion”). All the fun-
gal strains were routinely kept on potato dextrose agar 
(PDA) until use.

Table 1  Fungal strains isolated from  Antarctic marine 
sponges that were used in this wok

a  Strain nomenclature according to Henriquez et al. [20]
b  Identity of the strains according to Henriquez et al. [20]

Straina Genus or speciesb

F09-T1-5 Pseudogymnoascus pannorum

F09-T1-10 Pseudogymnoascus pannorum

F09-T3-1 Geomyces sp.

F09-T3-2 Geomyces sp.

F09-T3-4 Geomyces sp.

F09-T3-5 Geomyces sp.

F09-T3-8 Geomyces sp.

F09-T3-17 Geomyces sp.

F09-T7-1 Penicillium polonicum

F09-T7-2 Penicillium polonicum

F09-T9-1 Penicillium sp.

F09-T10-1 Penicillium sp.

F09-T12-1 Cladosporium sp.

F09-T12-2 Cladosporium sp.

F09-T13-12 Geomyces sp.

F09-T14-2 Thelebolus sp.

F09-T15-6 Epicoccum sp.

F09-T16-1 Phoma sp.

F09-T18-1 Pseudogymnoascus sp.

F09-T18-12 Pseudogymnoascus sp.

F09-T18-14 Pseudogymnoascus sp.

F09-T18-15 Pseudogymnoascus sp.

F09-T18-16 Pseudogymnoascus sp.

F09-T18-19 Pseudogymnoascus sp.

F09-T18-20 Pseudogymnoascus sp.

F09-T18-23 Pseudogymnoascus sp.

F09-T23-3 Acremonium sp.



Page 3 of 6Poveda et al. Biol Res  (2018) 51:28 

Screening of pectinolytic activity
In preliminary experiments, we observed that fungi asso-
ciated with Antarctic marine sponges have optimal tem-
perature for growth at 15 °C (data not shown), so we used 
this temperature in all the experiments. At that tempera-
ture, pectinolytic activity was screened upon inoculation 
of fungal isolates on agar plates containing Czapek-agar 
plus pectin as the sole carbon source (NaNO3 10  g/L, 
K2HPO4 2  g/L; MgSO4⋅7 H2O 0.5  g/L, FeSO4⋅7H2O 
0.01  g/L, pectin from citrus peel (Sigma) 10  g/L, agar–
agar 2%; pH adjusted at 5.5 with NaOH). Fungi were 
grown during 7 days in triplicate, and pectinolytic activ-
ity was determined by staining the plates with 1% cetyl-
trimethyl ammonium bromide (CTAB) solution. CTAB 
has the ability to precipitate acid polysaccharides in solu-
tion, so it is commonly used to detect pectinolytic activ-
ity on agar plates [22–24]. Briefly, 5 mL of CTAB solution 
was added to each plate and incubated during 30  min. 
After that, excess of CTAB solution was eliminated, and 
the enzymatic activity index (EAI) was calculated as the 
halo/colony diameter (h/c) ratio according to de García 
et  al. [25]. EAI is a semi-quantitative parameter com-
monly used to quickly estimate the enzymatic activity of 
microorganisms grown on solid media [26, 27].

Production of pectinolytic activity in liquid medium
Flasks containing 100  mL of liquid Czapek-pectin 
medium (the same composition as above, without agar–
agar) were inoculated with 1 × 107 spores, and incubated 
at 15 °C and 180 r.p.m. during 10 days. Supernatant sam-
ples were withdrawn daily, and pectinolytic activity was 
measured as described below.

Quantitative pectinolytic activity assays
For pectinase activity measurement, each reaction mix 
contained 200 µL sodium acetate buffer 500 mM pH 5.5, 
200  µL pectin solution [pectin from citrus peel (Sigma) 
0.5%, pH 5.5] and 25 µL of the suitable supernatant sam-
ple. The reaction mix was incubated during 30  min at 
37  °C. Reaction was stopped by addition of 640  µL of 
dinitrosalicylic acid solution (dinitrosalicylic acid 1%, 
sodium potassium tartrate 30% and NaOH 1.6%) and 
incubation at 95 °C for 5 min. At these conditions, dini-
trosalicylic acid reacts with the reducing sugar released 
from pectin, producing a complex with maximal absorb-
ance at 540  nm. Thus, the reaction was then cooled in 
ice by 5 min, and centrifuged to obtain the supernatant. 
Absorbance of the supernatant was measured at 540 nm, 
and absorbance data were interpolated in a suitable cali-
bration plot. The pectinolytic activity (U/mL) was cal-
culated as the enzyme necessary to release 1  µmol of 
reducing sugars for minute. Specific activity (U/mg) was 

obtained normalizing the activity by protein concentra-
tion, determined by the Bradford’s method [28].

To determinate the effect of temperature on pectino-
lytic activity, the same assay described above was per-
formed, but at different temperatures. For details of 
temperatures used, see the respective Figure.

Results
Screening of pectinolytic activity in fungi from Antarctic 
marine sponges
Nineteen out 27 strains grew on Czapek-pectin medium, 
but did not show halo of degradation in the plate assay at 
15  °C (data not shown), suggesting that they have poor 
pectinolytic activity at low temperature. The rest of the 
isolates (eight fungi) showed different degree of inten-
sity of the pectinolytic activity by the halo/colony ratio 
(Fig.  1). All these fungi had similar behavior, with EAI 
around 1.5–2.0 (Fig.  1). These eight fungi were used to 
estimate their production of pectinolytic activity in liquid 
medium (see below).

Geomyces sp. F09‑T3‑2 produces the highest levels 
of pectinolytic activity in liquid medium
The eight fungi showed in Fig.  1 were used to quanti-
tatively estimate the production of pectinolytic activ-
ity in liquid medium at 15 °C during 10 days. By far, the 
strain Geomyces sp. F09-T3-2 produced the highest lev-
els of pectinolytic activity. At day 5, this strain produced 
maximal specific activity (121 U/mg; Fig. 2). The rest of 
the strains tested produced barely detectable activity 

Fig. 1  Pectinolytic activity of Antarctic fungi from marine sponges 
on agar plates. Pectinolytic activity expressed as EAI was calculated 
as the halo/colony diameter (h/c) ratio. Only those isolates whose EAI 
was higher than 1.0 are shown. The name and code of each fungal 
isolate is indicated under each bar. Temperature of assay was 15 °C. 
Each experiment was done in triplicate, and error bars indicate the SD 
of mean values. Differences in pectinolytic activity detected were not 
statistically significant (p < 0.05 using Student’s-t test)
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compared with this strain (data not shown), so they were 
discarded for further experiments. Differences in activi-
ties observed between plate assays and measurements in 
liquid medium can be explained by different conditions 
used in these assays. Plate assays are semi-quantitative 
and give a rough idea of the potential of the fungi as pro-
ducers of cold-adapted pectinases. The assay takes 7 days, 
and during this time, pectinases secreted diffuse through 
the agar gel, degrading pectin. Thus, the result observed 
in plate assay corresponds to enzymes acting on pectin 
during several days. On the contrary, the measurement of 
specific activity is performed in liquid medium, and com-
pared to plate assay, it takes a very short time (30 min). 
The differences can be also explained by the sensitivity of 
the assays. In plate assay, similar halos can be produced 
by few but highly active enzymes, or by much enzyme 
with low activity. On the contrary, specific activity can 
discriminate both situations. Thus, two fungi can give 
similar patterns in plate assay, but their specific activities 
can be very different because different enzymatic conver-
sion rates, or differences in the total protein produced by 
each fungus.

Geomyces sp. F09‑T3‑2 shows optimal pectinolytic activity 
at 30 °C
We tested the performance of pectinolytic activity of 
Geomyces sp. F09-T3-2 at different temperatures (Fig. 3). 
We found that pectinases of this strain have a good per-
formance at low temperatures. Our results indicate that 
optimal temperature for activity of pectinases from Geo-
myces sp. F09-T3-2 is 30  °C, which is 10 degrees lower 
than those observed for the commercial pectinases from 
mesophilic fungus (see “Discussion”). In fact, to the best 
of our knowledge, these results suggest that pectinases 
from Geomyces sp. F09-T3-2 have the lowest optimal 

temperature among the fungal pectinases described so 
far (see “Discussion”).

Discussion
Pectins are a heterogeneous group of polysaccharides 
that compose the plant cell wall. In food industry, high 
amounts of pectin are released during processing of 
fruits, which tend to remain in the suspension, resulting 
in an increase in viscosity and turbidity, which hampers 
the clarification process. This problem is usually solved 
by the use of pectinolytic enzymes [29]. Commercial pec-
tinases have optimal activity temperatures between 40 
and 60  °C, but some processes (such as white wine and 
pisco production) occur at lower temperatures. Thus, 
pectinases working at lower temperatures are necessary. 
Here we have identified a fungal strain with optimal pec-
tinolytic activity at 30 °C, at least 10 °C lower than most 
of the fungal pectinases described so far. This strain 
would be an ideal candidate for future purification of 
cold-active pectinases.

To the best of our knowledge, there are no reports 
describing the successful production of pectinolytic 
activity from filamentous fungi isolated from Antarc-
tica. Loperena et al. [30] characterized the production 
of pectinolytic activity in several Antarctic fungi using 
a similar plate semi-quantitative analysis, but they did 
not found any filamentous fungi producing pectino-
lytic activity. On the contrary, we found eight strains 
(representing 30% of the Antarctic filamentous fungi 
analyzed in this work) producing pectinolytic activity 

Fig. 2  Production of pectinolytic activity by Geomyces sp. F09-T3-2. 
Geomyces sp. F09-T3-2 was grown in liquid cultures containing 
pectin as the sole carbon source at 15 °C. Supernatants samples were 
withdrawn daily and pectinolytic activity was measured according 
the quantitative assay described in “Methods”. Each measurement 
was done in triplicate, and error bars indicate the SD of mean values 
of specific activity

Fig. 3  Effect of temperature on pectinolytic activity of Geomyces sp. 
F09-T3-2. Supernatant samples obtained at day 5 (day of maximal 
production, see Fig. 2) were used. Pectinolytic activity was measured 
according the quantitative assay described in “Methods”, except that 
temperature of assay was varied. Maximal specific activity obtained 
at 30 °C was set as 100% activity, and the average specific activities 
obtained at other temperatures were normalized and expressed as 
percentage with respect to activity at 30 °C. Values are expressed as 
mean ± standard deviation of three independent readings
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(Fig. 1). Thus, this may be the first result demonstrat-
ing the production of pectinolytic activity in filamen-
tous fungi from any Antarctic origin.

Our strains producing pectinolytic activity includes 
four strains of Geomyces sp., one strain of Pseudogym-
noascus sp., one strain of Acremonium sp., one strain 
of Cladosporium sp. and one strain of P. polonicum. 
Pectinolytic activity has been already described in 
Penicillium, Cladosporium and Acremonium species 
[31–35], but not in Geomyces or Pseudogymnoascus 
species. Thus, pectinolytic activity in these fungal gen-
era is reported here for the first time. Geomyces sp. 
and Pseudogymnoascus sp. are saprophytic cold-lov-
ing fungi [21] commonly found in cold environments 
including marine and terrestrial Antarctica [20, 30, 36, 
37]. Geomyces sp. and Pseudogymnoascus sp. are allied 
(phylogenetically closer) genera whose taxonomical 
placement was recently re-evaluated [38]. As a result, 
currently just one species of Geomyces (G. auratum) is 
formally recognized [38]. Interestingly, and according 
to a preliminary analysis (data not shown), none of the 
Geomyces sp. strains that showed pectinolytic activ-
ity in Fig. 1 (including the best producer Geomyces sp. 
F09-T3-2) belong to G. auratum, so they would be new 
species waiting for a formal taxonomical description. 
Regarding Pseudogymnoascus sp., it is a very diverse 
and extent group of species, most of them undescribed 
yet, whose taxonomic relationships are not totally 
clear [38].

The production of pectinase activity under 40  °C 
by filamentous fungi is rare. This is true even in psy-
chrophilic and psychrotolerant filamentous fungi. For 
example, Sclerotinia borealis, a pathogenic fungus 
found in regions extremely cold that does not grow at 
temperatures higher than 20  °C, produces pectinases 
with optimum activity at 40  °C [9]. Another case is 
Mucor flavus, a psychrotolerant fungus with optimal 
growth at 15 °C that produces pectinases with optimal 
activity at 45  °C [10]. Thus, to the best of our knowl-
edge, in the literature there is only one example of a 
filamentous fungus producing pectinases with opti-
mum activity below 40  °C. This belongs to the phy-
topathogenic fungus Botrytis cinerea, which produces 
pectinases with optimal activities between 34 and 
37  °C [15]. In our case, we observed that the optimal 
temperature of the pectinolytic activity of Geomyces 
sp. F09-T3-2 was 30  °C (Fig.  3). Thus, the pectinases 
from Geomyces sp. F09-T3-2 may have the lower opti-
mal temperature described so far for any pectinase 
from filamentous fungi, making this strain a promis-
sory candidate for the purification of cold-active pecti-
nases with potential biotechnological applications.

Conclusion
To the best of our knowledge, this work is the first 
describing the production of pectinolytic activity in any 
Antarctic filamentous fungi. Our results suggest that 
filamentous fungi associated with Antarctic marine 
sponges are potential producer of pectinases. In par-
ticular, the isolate Geomyces sp. F09-T3-2 showed opti-
mal pectinolytic activity at 30 °C, the lower temperature 
described so far for this activity in any filamentous fun-
gus. Thus, pectinases from this isolate may be poten-
tially suitable for biotechnological applications such as 
clarification of mash for the production of white wine 
and pisco.
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