A Note on Modifications of rg-Closed Sets in Topological Spaces

Takashi Noiri 2949-1 Shiokita-Cho, Hinagu, Yatsushiro-Shi, Kumamoto-Ken, 869-5142 Japan. t.noiri@nifty.com VALERIU POPA
Department of Mathematics,
University of Bacău,,
600 115 Bacău,, Romania,
upopa@ub.ro

ABSTRACT

We point out that a certain modification of regular generalized closed sets due to Palaniappan and Rao [15] means nothing to the family of semi-open sets.

RESUMEN

Destacamos que una modificación de conjuntos cerrados regulares generalizados debido a Palaniappan and Rao [15] no tiene importancia para la familia de conjuntos semi-abiertos.

Keywords and Phrases: g-closed, rg-closed.

2010 AMS Mathematics Subject Classification: 54A05.

1 Introduction

In 1970, Levine [11] introduced the notion of generalized closed (briefly g-closed) sets in topological spaces and showed that compactness, locally compactness, countably compactness, paracompactness, and normality etc are all g-closed hereditary. And also he introduced a separation axiom called $T_{1/2}$ between T_1 and T_0 . Since then, many modifications of g-closed sets are introduced and investigated. Among them, Dontchev and Ganster [5] introduced the notion of $T_{3/4}$ -spaces which are situated between T_1 and $T_{1/2}$ and showed that the digital line or the Khalimsky line [9] (\mathbf{Z} , κ) lies between T_1 and $T_{3/4}$.

As a modification of g-closed sets, regular generalized closed sets are introduced and investigated by Palaniappan and Rao [15]. As the further modification of g-closed sets, Gnanambal [7] introduced the notion of generalized preregular closed sets. The purpose of this note is to present some remarks concerning modifications of regular generalized closed sets.

2 Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. We recall some generalized open sets in topological spaces.

Definition 2.1. Let (X,τ) be a topological space. A subset A of X is said to be

- (1) α -open [14] if $A \subset Int(Cl(Int(A)))$,
- (2) semi-open [10] if $A \subset Cl(Int(A))$,
- (3) preopen [12] if $A \subset Int(Cl(A))$,
- (4) semi-preopen [2] or β -open [1] if $A \subset Cl(Int(Cl(A)))$,
- (5) b-open [3] if $A \subset Int(Cl(A)) \cup Cl(Int(A))$,
- (6) regular open if A = Int(Cl(A)).

The family of all α -open (resp. semi-open, preopen, semi-preopen, b-open, regular open) sets in (X,τ) is denoted by τ^{α} (resp. SO(X), PO(X), SPO(X), BO(X), RO(X, τ)).

For generalizations of open sets defined above, the following relations are well known:

DIAGRAM I

$$\begin{array}{ccc} \mathrm{open} \Rightarrow \alpha\mathrm{-open} \Rightarrow \mathrm{preopen} \\ & & \downarrow \\ \mathrm{semi-open} \Rightarrow \mathrm{b\text{-}open} \Rightarrow \mathrm{semi\text{-}preopen} \end{array}$$

Definition 2.2. Let (X, τ) be a topological space. A subset A of X is said to be α -closed [13] (resp. semi-closed [4], preclosed [12], semi-preclosed [2], b-closed [3]) if the complement of A is α -open (resp. semi-open, preopen, semi-preopen, b-open).

Definition 2.3. Let (X, τ) be a topological space and A a subset of X. The intersection of all α -closed (resp. semi-closed, preclosed, semi-preclosed, b-closed) sets of X containing A is called the α -closure [13] (resp. semi-closure [4], preclosure [6], semi-preclosure [2], b-closure [3]) of A and is denoted by $\alpha Cl(A)$ (resp. sCl(A), pCl(A), spCl(A), spCl(A)).

Definition 2.4. Let (X, τ) be a topological space. A subset A of X is said to be

- (1) generalized closed (briefly g-closed) [11] if $Cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$,
- (2) regular generalized closed (briefly rg-closed) [15] if $Cl(A) \subset U$ whenever $A \subset U$ and $U \in RO(X, \tau)$,
- (3) generalized preregular closed (briefly gpr-closed) [7] if $pCl(A) \subset U$ whenever $A \subset U$ and $U \in RO(X, \tau)$.

For generalizations of closed sets defined above, the following relations are well known:

DIAGRAM II

 $closed \Rightarrow q\text{-}closed \Rightarrow rq\text{-}closed \Rightarrow qpr\text{-}closed$

3 Modifications of rq-closed sets

First we shall define a modification of rg-closed sets.

Definition 3.1. Let (X, τ) be a topological space. A subset A of X is said to be *regular generalized* α -closed (briefly $rg\alpha$ -closed) if $\alpha Cl(A) \subset U$ whenever $A \subset U$ and $U \in RO(X, \tau)$.

Lemma 3.2. If A is a subset of (X,τ) , then τ^{α} -Int $(\tau^{\alpha}$ -Cl(A)) = Int(Cl(A)).

Proof. This is shown in Corollary 2.4 of [8].

Lemma 3.3. Let V be a subset of a topological space (X,τ) . Then $V \in \mathrm{RO}(X,\tau)$ if and only if $V \in \mathrm{RO}(X,\tau^{\alpha})$.

Proof. This is an immediate consequence of Lemma 3.2.

Theorem 3.4. A subset A of a topological space (X, τ) is $\operatorname{rg}\alpha$ -closed in (X, τ) if and only if A is $\operatorname{rg-closed}$ in the topological space (X, τ^{α}) .

Proof. Necessity. Suppose that A is $rg\alpha$ -closed in (X,τ) . Let $A \subset V$ and $V \in RO(X,\tau^{\alpha})$. By Lemma 3.3, $V \in RO(X,\tau)$ and we have τ_{α} -Cl $(A) = \alpha$ Cl $(A) \subset V$. Therefore, A is rg-closed in (X,τ^{α}) .

Sufficiency. Suppose that A is rg-closed in (X, τ^{α}) . Let $A \subset V$ and $V \in RO(X, \tau)$. By Lemma 3.3, $V \in RO(X, \tau^{\alpha})$ and hence $\alpha Cl(A) = \tau_{\alpha} - Cl(A) \subset V$. Therefore, A is $rg\alpha$ -closed in (X, τ) .

Remark 3.5. It turns out that, by Therem 3.4, we can not obtain the essential notion even if we replace Cl(A) in Definition 2.4(2) with $\alpha Cl(A)$.

Next, we try to replace Cl(A) in Definition 2.4(2) with sCl(A).

Lemma 3.6. Let (X, τ) be a topological space. If $A \subset V$ and $V \in RO(X, \tau)$, then $sCl(A) \subset V$.

Proof. Let $A \subset V$ and $V \in \mathrm{RO}(X,\tau)$. Then we have $\mathrm{sCl}(A) \subset \mathrm{sCl}(V) = V \cup \mathrm{Int}(\mathrm{Cl}(V)) = V$ and hence $\mathrm{sCl}(A) \subset V$.

Remark 3.7. (1) Lemma 3.6 shows that in case $SO(X, \tau)$ the condition " $sCl(A) \subset V$ whenever $A \subset V$ and $V \in RO(X, \tau)$ " does not define a subset like regular generalized semi-closed sets.

(2) By Diagram I, $SO(X) \subset BO(X) \subset SPO(X)$ and hence $SPO(A) \subset SCl(A) \subset SCl(A)$ for any subset A of X. Therefore, we can not obtain any notions even if we replace Cl(A) in Definition 2.4(2) with SCl(A), SCl(A) or SPO(A).

Received: October 2010. Accepted: September 2012.

References

- [1] M. E. Abd El-Monsef, S. N. El-Deep and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77–90.
- [2] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24–32.
- [3] D. Andrijević, On b-open sets, Mat. Vesnik, 48 (1996), 59–64.
- [4] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971), 99–112.
- [5] J. Dontchev and M. Ganster, On δ-generalized closed sets and T_{3/4}-spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 17 (1996), 15–31.
- [6] S. N. El-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27(75) (1983), 311–315.
- Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure Appl. Math., 28 (1997), 351–360.
- [8] D. S. Janković, A note on mappings of extremally disconnected spaces, Acta Math. Hungar., 46 (1985), 83–92.
- [9] E. D. Khalimsky, R. Kopperman and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl., 36 (1990), 1–17.

- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, **70** (1963), 36–41.
- [11] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89–96.
- [12] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, **53** (1982), 47–53.
- [13] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α -continuous and α -open mappings, Acta Math. Hungar., **41** (1983), 213–218.
- [14] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [15] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J., $\bf 33$ (1993), 211-219.