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ABSTRACT

We study the K-theory groups for the group C∗
-algebras of nilpotent disrete groups,

mainly, without torsion. We determine the K-theory lass generators for the K-theory

groups by using generalized Bott projetions.

RESUMEN

Estudiamos los grupos de la K-teoría para el grupo de álgebras C∗
de grupos disretos

nilpotentes prinipalmente sin torsión. Determinamos los generadores de la lase de

K-teoría para los grupos de la K-teoría usando proyeiones generalizadas de Bott.
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1 Introdution

The K-theory groups for the group C∗
-algebra of the disrete Heisenberg nilpotent group are

omputed in the paper [1℄ of Anderson and Pashke by determining the K-thoery lass generators

for the K-theory groups by using the Bott projetion on the two dimensional torus. The K-

theory groups for the group C∗
-algebras of the generalized disrete Heisenberg nilpotent groups

are omputed in the paper [3℄ of the author by determining the K-theoy lass generators for the

K-theory groups by using generalized Bott projetions on the higher dimensional torus de�ned

in [3℄.

In this paper, based on those results in the typial ase of two-step, nilpotent disrete groups,

we study the K-theory groups for the group C∗
-algebras of general, nilpotent disrete groups,

mainly, without torsion, and it is found out that we an determine the K-theory lass generators

for the K-theory groups by using the generalized Bott projetions. Moreover, several onsequenes

of this main result are also obtained.

Notation. We denote by C(X) the C∗
-algebra of all ontinuous, omplex-valued funtions on a

ompat Hausdor� spae X. Denote by C∗(G) the (full or redued) group C∗
-algebra of a nilpotent,

disrete group G (that is amenable). Note that C∗(G) is generated by unitaries that orrespond

to generators of G. Denote by K0(A) and K1(A) the K0-group and the K1-group of a C∗
-algebra

A respetively (see [2℄).

2 Finitely generated nilpotent disrete ase

Reall that a k-dimensional nonommutative torus denoted by Tk
θ is the universal C∗

-algebra

generated by k unitaries Uj (1 ≤ j ≤ k) with the relations UiUj = e2πiθijUjUi for i 6= j and

θij ∈ R and θ = (θij) ∈ Mk(R) a k× k skew adjoint matrix over the �eld R of real numbers with

θii = 0 and θji = −θij (i 6= j).

Lemma 2.1. Let G be a �nitely generated, two-step nilpotent disrete group without torsion and

with Z its enter and C∗(G) be the group C∗
-algebra of G.

Then C∗(G) an be viewed as a ontinuous �eld C∗
-algebra over the dual group Z∧

of Z with

�bers given by nonommutative tori T
n−k
θλ

with the relations by θλ varing over elements λ ∈ Z∧
,

where Z∧
is an ordinary torus T

k
by Pontrjagin duality theorem with 1 ≤ k = rank(Z) the rank of

Z, and n = rank(G).

Proof. This is ertainly known and may follow from the same way as done by [1℄ in the ase of G

the disrete Heisenberg group of rank 3.

Indeed, note that sine G/Z is ommutative, the ommutator subgroup [G,G] of G is ontained

in Z. As a fat of the unitaty representation theory for G, that is identi�ed with the representation
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theory of C∗(G), any element λ in Z∧
indues an irreduible indued representation πλ of G and

of C∗(G) and any element of [G,G] is mapped to a omplex number in the one-torus T, so that the

image of C∗(G) under πλ is a nonommutive torus T
n−k
θλ

with θλ assoiated to λ. Sine elements

λ ∈ Z∧ = Tk
vary ontinuously on Z∧

, the norms of πλ([ui, uj]) for ui, uj unitary generators

of C∗(G) orresponding to generators of G also vary ontinuously, to make a ontinuous �eld

C∗
-algebra over Z∧

with �bers nonommutative tori T
n−k
θλ

.

As the main result we obtain

Theorem 1. Let G be a �nitely generated, nilpotent disrete group without torsion and C∗(G) be

the group C∗
-algebra of G.

Then the K-theory lass generators in the K0-group K0(C
∗(G)) are given by the lass of the

identity of C∗(G) and the lasses of generalized Bott projetions ombinatorily orresponding to

abelian subalgebras of C∗(G) that orrespond to even subsets of mutually ommuting generators,

even numbered, in the set of generators of G.

Moreover, the K-theory lass generators in the K1-group K1(C
∗(G)) are given by the lass

of unitary generators of C∗(G) that orrespond to eah of generators of G, or orrespond both to

generators of G and to the generalized Bott projetions, eah of whih is obtained ombinatorily

from both the generalized Bott projetion and eah of generators of G whih is not involved in the

generalized Bott projetion.

The statement above an be understood preisely by helpful examples and remark below the

following proof.

Proof. Reall that under the assumption onG, the groupG is isomorphi to a suessive semi-diret

produt of Z the group of integers:

G ∼= Z⋊ Z ⋊ · · ·⋊ Z

rossed by Z rank(G) − 1 times, with rank(G) the rank of G. Then

C∗(G) ∼= C∗(Z)⋊ Z ⋊ · · ·⋊ Z

a suessive rossed produt C∗
-algebra by Z, and C∗(Z) ∼= C(T) by the Fourier transform.

Set rank(G) = n. Let U = {g1, · · · , gn} be the set of generators of G. Note that sine G

is disrete, the generators of G an be identi�ed with orresponding unitary generators of C∗(G)

(via the left regular, or universal representation on the orresponding Hilbert spae sine G is

amenable). Suppose that V is an even subset of U with some mutually ommuting generators

of G. Denote by C∗(V) the C∗
-algebra generated by elements of V . Then C∗(V) is an abelian

subalgebra of C∗(G) and is isomorphi to C(T|V|) the C∗
-algebra of all ontinuous, omplex-valued

funtions on the |V |-dimensional torus T|V|
, where |V | is the ardinality of V . We assign suh even
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subset V eah to the generalized Bott projetion PV in M2(C(T
|V|)) the 2× 2 matrix algebra over

C(T|V|), involving all elements of V . See the remark below for the de�nition of PV .

It follows that K0(C(T
|V|)) an be embedded in K0(C

∗(G)) anonially. Therefore, the K0-

group lass [PV ] an be viewed in K0(C
∗(G)). It also follows that if V 6= V ′

even subsets in U,

then [PV ] 6= [PV ′ ], i.e., PV is not equivalent to PV ′
. Indeed, if PV is equivalent to PV ′

, then we an

dedue a ontradition, by observing that the oordinates of T|V|
orresponding to V are di�erent

from those of T|V ′|
of V ′

.

If G is ommutative, then G ∼= Zn
, and C∗(G) ∼= C(Tn) by the Fourier transform, and it is

shown by [3℄ that the K0-group lasses of generalized Bott projetions on the even dimensional

tori T2k (2 ≤ 2k ≤ n) ombinatorily in Tn
and the lass of the identity generate all lasses in

K0(C(T
n)).

By the lemma above, if G is a �nitely generated, two-step nilpotent disrete group without

torsion, then C∗(G) an be viewed as a ontinuous �eld C∗
-algebra over the dual group Z∧

of

the enter Z of G with �bers given by nonommutative tori, that are suessive rossed produt

C∗
-algebras by Z, generated by unitaries orresponding to generators of G not in Z, where their

relations vary over Z∧
. It is also shown by [3℄ that even in this ase, the same holds as in the

ommutative ase.

Indeed, the lass of the identity and the lasses of generalized Bott projetions in M2(C
∗(G))

generate all lasses in K0(C
∗(G)), beause it is notied in [3℄ that the lasses of the genearalized

Rie�el projetions de�ned in [3℄ and the lass of the identity generate all lasses in the K0-group

of a �ber, a nonommutative torus, and the lasses of the genearalized Rie�el projetions an not

ontribute to a lass of K0(C
∗(G)) sine those projetions are not ontinuous over Z∧

. Therefore,

a projetion for a lass of K0(C
∗(G)) an not involve the generalized Rie�el projetions in �bers.

We now onsider the general ase by indution. Suppose that the theorem on K0 is true when

rank(G) ≤ n. Let rank(G) = n + 1. Let [p] ∈ K0(C
∗(G)) for a projetion p in a matrix algebra

over C∗(G).

If p is generated by k unitaries orresponding to k generators of G with k ≤ n, then p is

ontained in the group C∗
-algebra C∗(H) of a nilpotent subgroup H of G generated by V the set of

the k generators of G, that is C∗(H) = C∗(V) ⊂ C∗(G). By indution hypothesis, the lass [p] is

spanned by the lass of the identity and the lasses of generalized Bott projetions in M2(C
∗(H)).

We now assume that the projetion p involves all elements of U. We also may assume that G

is not two-step nilpotent. Therefore, the quotient group G/Z is not ommutative and nilpotent.

There is a quotient map q from C∗(G) to C∗(G/Z) and is extended to their matrix algebras. Then

q(p) is a projetion that involves all generators of G/Z. But by indution, and sine G/Z is non

ommutative, the K0-group lasses of K0(C
∗(G/Z)) an not involve all generators of G/Z. This is

a ontradition. Hene, there is no suh projetion p. In fat, this redution an be ontinued until

that p is ontained in an abelian subalgebra of C∗(G) that is generated by unitaries orresponding

to a set of mutually ommuting generators of G
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The K1-group ase for C∗(G) is treated similarly as in the K0-group ase above. Indeed,

when G is ommutative, it is shown by [3℄ that the K1-group K1(C
∗(G)) an be generated by the

lasses represented by either unitary generators of C∗(G) orresponding to generators of G or the

unitaires that ombinatorily orrespond to both generalized Bott projetions and eah of unitary

generators of C∗(G) orresponding to generators of G. See the remark below for the de�nition of

the unitaries. Moreover, even in the ase of G two-step nilpotent, the same holds for K1(C
∗(G)).

And the general ase an be proved by the same way as in the proof for that ase of K0(C
∗(G)).

In fat, the onstrution of generators of K1(C
∗(G)) an be made by bijetively orreponding to

the generators of K0(C
∗(G)) onstruted, in a suitable and ombinatori way (see the examples

below).

Remark. Reall from [3℄ (or [1℄ originally) that the Bott projetion P in M2(C(T
2)) is de�ned as

a projetion-valued funtion from T
2
to M2(C):

P(w, z) = Ad(U(w, z))

(

1 0

0 0

)

∈ M2(C), (w, z) ∈ T
2,

where U(w, z) = Y(t, z)∗ with w = e2πit ∈ T for t ∈ [0, 1] and

Y(t, z) = exp

(

iπt

2
K(z)

)

exp

(

iπt

2
S

)

K(z) =

(

0 z

	z 0

)

, S = K(1).

Moreover, the generalized Bott projetionQk inM2(C(T
2k)) is de�ned in [3℄ by a projetion-valued

funtion from T2k
to M2(C):

Qk(z1, · · · , z2k) = Ad(U1(z1, z2))Ad(U2(z3, z4)) · · ·Ad(Uk(z2k−1, z2k))

(

1 0

0 0

)

where Uj(·, ·) = U(·, ·) for 1 ≤ j ≤ k. Furthermore, the unitary Vk in M2(C(T
2k+1)) obtained

from the generalized Bott projetion Qk and a unitary generator u of C∗(G) orresponding to a

generator of G is de�ned in [3℄ by

Vk =

(

1 0

0 1

)

+ (u− 1)⊗Qk ∈ M2(C(T
2k+1)).

Example 2.2. If G = Zn
, then C∗(G) ∼= C(Tn) by the Fourier transform, and K∗(C(T

n)) ∼= Z2n−1

for ∗ = 0, 1 ( [4℄). Note that the generators of K0(C(T
n)) are given by the lass of the identity and

the lasses of generalized Bott projetions de�ned as above and the generators of K1(C(T
n)) are

given by the lasses of unitary generators of C∗(Zn) orresponding to generators of Zn
and the
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lasses of the unitaries assoiated to both generalized Bott projetions and the unitary generators

of C∗(Zn) de�ned as above (see [3℄).

More preisely, when n = 4, the generators of K0(C
∗(Z4)) ∼= Z8

is given by the following

lasses:

[1], [P12], [P13], [P14],

[P23], [P24], [P34], [Q1234],

where 1 is the identity of C∗(Z4) and eah Pij over T
4
is identi�ed with the Bott projetion over

T
2
that orresponds to i, j oordinates in T

4
, and Q1234 is the generalized Bott projetion over

T4
. Also, the generators of K1(C

∗(Z4)) ∼= Z8
is given by the following lasses:

[u1], [u2], [u3], [u4],

[V123], [V124], [V134], [V234],

where eah uj is the unitary generator of C∗(Z4) orresponding to generators of Z4
and eah

unitary Vijk in M2(C
∗(Z4)) is obtained by Pij and uk. Note that Vijk may be obtained from

either Pjk and ui, or Pik and uj.

Example 2.3. Let G be the disrete Heisenberg group of rank 3:

G =














1 a c

0 1 b

0 0 1









|a, b, c ∈ Z






.

Then Z = Z and G/Z ∼= Z2
. Also, C∗(G) is viewed as a ontinuous �led C∗

-algebra over T = Z∧

with �bers nonommutative 2-tori T2
θλ
. It is omputed by [1℄ (and also [3℄) that

K0(C
∗(G)) ∼= Z

3, K1(C
∗(G)) ∼= Z

3,

and the generators of K0(C
∗(G)) is given by the lass of the identity of C∗(G) and two lasses of the

Bott projetions over T2
, where their domains are di�erent in the sense as one T2 = T×Z∧

with the

�rst fator T orresponding to one of two generators of the �bers and the other T2 = T×Z∧
with

the �rst fator T orresponding to the other of two generators of the �bers, and the generators of

K1(C
∗(G)) is given by two lasses of unitary generators of C∗(G) orresponding both to generators

of G and to one of two Bott projetions and the lass of the unitary of M2(C
∗(G)) obtained from

both the hosen Bott projetion and the rest of unitary generators of C∗(G) orresponding to

generators of G. Namely,

K0(C
∗(G)) ∼= 〈[1], [P13], [P23]〉,

K1(C
∗(G)) ∼= 〈[u1], [u3], [V123]〉,

where the equations mean that the left hand sides are generated by the lasses in the brakets in

the right hand sides, and the third oordinate in T3
orresponds to Z∧

and the unitary V123 is
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obtained from the Bott projetion P13 and u2. Note that the above set of generators of K1(C
∗(G))

may be replaed with {[u2], [u3], [V
′

123]}, where V
′

123 is obtained from the Bott projetion P23 and

u1.

Example 2.4. Let G × G be the diret produt of G the disrete Heisenberg nilpotent group of

rank 3. Then C∗(G×G) ∼= C∗(G)⊗C∗(G) the tensor produt of C∗(G). Sine Kj(C
∗(G)) (j = 0, 1)

are torsion free, the Künneth theorem in K-theory for C∗
-algebras (see [2℄) implies that

K0(C
∗(G× G)) ∼= [K0(C

∗(G))⊗ K0(C
∗(G))]⊕ [K1(C

∗(G))⊗ K1(C
∗(G))]

∼= [Z3 ⊗ Z
3]⊕ [Z3 ⊗ Z

3] ∼= Z
18,

K1(C
∗(G× G)) ∼= [K0(C

∗(G))⊗ K1(C
∗(G))]⊕ [K1(C

∗(G))⊗ K0(C
∗(G))]

∼= [Z3 ⊗ Z
3]⊕ [Z3 ⊗ Z

3] ∼= Z
18.

Our theorem tells us that

K0(C
∗(G×G)) ∼= 〈[1], [P13], [P23], [P46], [P56],

[P14], [P15], [P16], [P24], [P25], [P26], [P34], [P35], [P36],

[Q1346], [Q1356], [Q2346], [Q2356]〉,

where the subindies 1, 2, 3 orrespond to the unitary generators uj of C
∗(G)⊗C and the subindies

4, 5, 6 orrespond to the unitary generators uj of C⊗C∗(G) and both subindies 3 and 6 orresponds

to the enter Z of G. Also,

K1(C
∗(G×G)) ∼= 〈[u1], [u3], [V123], [u4], [u6], [V456],

[V(P14, u2)], [V(P15, u2)], [V(P16, u2)],

[V(P24, u3)], [V(P25, u3)], [V(P26, u3)],

[V(P34, u5)], [V(P35, u6)], [V(P36, u4)],

[V(Q1346, u2)], [V(Q1356, u2)], [V(Q2346, u1)]〉,

where eah V(Pij, uk) means the unitary obtained from Pij and uk and eah V(Qijkl, um) means

the unitary obtained from Qijkl and um. Note that the unions of subindeies suh as (1, 2, 4) of

(14, 2) and (1, 2, 5) of (15, 2) are taken only one among ombinations of (i, j, k) with i < j < k.

Also, the hoie of adding um to either Pij or Qijkl may be di�erent to make the same set of unions

of subindies, and the set of generators of K0(C
∗(G × G)) orresponds to the set of generators of

K1(C
∗(G×G)) bijetively.

Corollary 2.5. If G is a �nitely generated, disrete nilpotent group without torsion, then

K0(C
∗(G)) ∼= K1(C

∗(G)).

Example 2.6. The isomorphism in the orollary above does not hold if G has torsion. Indeed,

if G = Zn = Z/nZ (n ≥ 2) a yli group, then C∗(G) ∼= Cn
, so that K0(C

∗(G)) ∼= Zn
but

K1(C
∗(G)) ∼= 0.
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Corollary 2.7. If G is a �nitely generated, disrete nilpotent group without torsion, then the

K-theory groups K0(C
∗(G)) and K1(C

∗(G)) are torsion free.

Proof. This follows from the onstrution of the generators of K0(C
∗(G)) and K1(C

∗(G)) obtained

in the theorem above.

Remark. Possibly, in the last orollary, the group G may have torsion.

Example 2.8. We onsider a version of the disrete Heisenberg nilpotent group with torsion

(see [1℄ or [3℄ for the disrete Heisenberg nilpotent group). Let G = Z2
2 ⋊α Z2 be a semi-diret

produt of the produt group Z2
2 of the yi group Z2 = Z/2Z by an ation of Z2 de�ned by

αt(b + tc, c) for b, c, t ∈ Z2. Then the group C∗
-algebra C∗(G) is isomorphi to the rossed

produt C(Z∧
2 × Z∧

2 ) ⋊α∧ Z2 via the Fourier transform, where the dual ation α∧
of Z2 on the

produt spae of the dual group Z
∧
2

∼= Z2 is de�ned by α∧
t (z,w) = (z, ztw) for z,w ∈ Z

∧
2 via the

duality

α∧
t (ϕz,w)(b, c) = ϕz,w(b + tc, c) = zb+tcwc = ϕz,ztw(b, c)

where ϕz,w ∈ Z∧
2 ×Z∧

2 indenti�ed with (z,w) (f. [5℄). We then obtain the following deomposition:

C(Z∧
2 × Z

∧
2 )⋊α∧ Z2

∼= [C⊗ (C2
⋊α∧ Z2)]⊕ [C⊗ (C2

⋊α∧ Z2)]

∼= [C2 ⊗ C∗(Z2)]⊕ [M2(C)]

∼= [C2 ⊗ C
2]⊕M2(C) ∼= C

4 ⊕M2(C)

where the ation α∧
on C2

in the �rst diret summand is trivial and that in the seond is the shift.

Therefore,

K0(C
∗(G)) ∼= Z

5, but K1(C
∗(G)) ∼= 0.

Hene the K-theory groups are torsion free.

In this ase, the diret sum fator Z4
in Z5 = K0(C

∗(G)) omes from C4
in C∗(G) whih

is a maximal abelian subalgebra of C∗(G) but the other diret sum fator Z in Z
5 = K0(C

∗(G))

omes from M2(C) in C∗(G) whih is a nonommutative subalgebra of C∗(G). Therefore, the ase

with torsion is ertainly di�erent from the torsion free ase onsidered above, but the nilpotent

ase with torsion is just the same as the abelian ase with torsion as in the example above, in the

K-theory level.

Corollary 2.9. If G is a �nitely generated, disrete nilpotent group without torsion, then both

K0(C
∗(G)) and K1(C

∗(G)) are isomorphi to a �nitely generated, free abelian group, i.e., Zm
for

some positive integer m.
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3 In�nitely generated ase

We assume that G is a ountable disrete group.

Theorem 2. Let G be an in�nitely generated, nilpotent disrete group without torsion. Then both

K0(C
∗(G)) and K1(C

∗(G)) of the group C∗
-algebra C∗(G) are isomorphi to an indutive limit of

�nitely generated free abelian groups:

K0(C
∗(G)) ∼= K1(C

∗(G)) ∼= lim

−→
Z
mn ,

for some positive integers mn with mn < mn+1, where the onneting maps Z
mn → Z

mn+1
are

injetive.

Therefore,

K0(C
∗(G)) ∼= K1(C

∗(G)) ∼= ⊕∞

Z,

whih is the in�nite diret sum of Z, as a group.

Proof. Let U = {g1, g2, · · · } be an in�nite set of generators of G and set Un = {g1, g2, . . . , gn},

where gn+1 is not generated by g1, · · · , gn. Let C
∗(Un) denote the C∗

-algebra generated by the

elements of C∗(G) that orrespond to the elements of Un. Then C∗(Un) is a C∗
-subalgebra of

C∗(G). There is the anonial inlusion in from C∗(Un) → C∗(Un+1). It follows that C
∗(G) is an

indutive limit of the C∗
-subalgebras C∗(Un) under the inlusions in. By ontinuity of K-theory,

we have

Kj(C
∗(G)) ∼= lim

−→
Kj(C

∗(Un))

for j = 0, 1. By the theorem in the previous setion, we see that both Kj(C
∗(Un)) for j = 0, 1

are isomorphi to Zmn
for some positive integer mn and mn ≤ mn+1 and also that there is a

anonial inlusion from Kj(C
∗(Un)) ∼= Zmn

to Kj(C
∗(Un+1)) ∼= Zmn+1

.

We need to hek that mn 6= mn+1 for eah n. Note that the group Hn generated by elements

of Un an be written as a suessive semi-diret produt by Z:

Hn
∼= Z ⋊ Z ⋊ · · ·⋊ Z

rossed by Z n− 1 times. Then Hn+1
∼= Hn ⋊Z. It follows that the ation of Z on Hn an not be

non-trivial on every generator of Hn. Beause, if non-trivial, Hn+1 is not nilpotent (but solvable).

Indeed, then there is no enter in Hn+1, a ontradition to the nilpotentness of Hn+1. Therefore,

there is a generator of Hn suh that the ation of Z is trivial on it. Therefore, we an onstrut

a new Bott projetion from these ommuting elements of Hn+1, and not from Hn. It follows that

mn < mn+1.

Example 3.1. If G is an in�nitely generated abelian disrete group, then C∗(G) is isomorphi to

an indutive limit of C(Tn) with the anonial inlusion from C(Tn) to C(Tn+1). Then

Kj(C
∗(G)) ∼= lim

−→
Kj(C(T

n)) ∼= lim

−→
Z
2n−1 ∼= ⊕∞

Z
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for j = 0, 1.

If G is an indutive limit of the produt groups ΠnZ2 with the anonial inlusion from ΠnZ2

to Πn+1Z2, then G is ommutative and in�nitely generated and has torsion. Then

C∗(G) ∼= lim

−→
C∗(Πn

Z2) ∼= lim

−→
⊗nC∗(Z2)

∼= lim

−→
⊗n

C
2 ∼= lim

−→
C

2n ∼= ⊕∞

C

where the last side means the in�nite diret sum of C, so that

Kj(C
∗(G)) ∼= Kj(⊕

∞

C) ∼= ⊕∞Kj(C) ∼=

{
⊕∞Z if j = 0,

0 if j = 1.

Reeived: Marh 2012. Aepted: September 2013.
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