S-paracompactness modulo an ideal

José Sanabria¹, Ennis Rosas¹, Neelamegarajan Rajesh², Carlos Carpintero¹, Amalia Gómez¹

¹ Departamento de Matemáticas, Universidad de Oriente, Cumaná, Venezuela.
² Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur-613005, Tamilnadu, India.

jesanabri@gmail.com, ennisrafael@gmail.com, nrajesh_topology@yahoo.co.in, carpintero.carlos@gmail.com, amaliagomez1304@gmail.com

ABSTRACT

The notion of S-paracompactness modulo an ideal was introduced and studied in [15]. In this paper, we introduce and investigate the notion of αS-paracompact subset modulo an ideal which is a generalization of the notions of αS-paracompact set [1] and α-paracompact set modulo an ideal [7].

RESUMEN

La noción de S-paracompacidad módulo un ideal fue introducida y estudiada en [15]. En este artículo, introducimos e investigamos la noción de un subconjunto αS-paracompacto módulo un ideal, que es una generalización de las nociones de conjunto αS-paracompacto [1] y conjunto α-paracompacto módulo un ideal [7].

Keywords and Phrases: semi-open, ideal, S-paracompact. Research Partially Supported by Consejo de Investigación UDO.

2010 AMS Mathematics Subject Classification: 54A05, 54D20.
1 Introduction

The concept of α-paracompact subset modulo an ideal was defined and investigated by Ergun and Noiri [7]. The notions of S-paracompact spaces and αS-paracompact subsets were introduced in 2006 by Al-Zoubi [1] and also have been studied by Li and Song [13]. Very recently, Sanabria, Rosas, Carpintero, Salas and García [15] have introduced and investigated the concept of S-paracompact space with respect to an ideal as a generalization of the S-paracompact spaces. In this paper, we introduce the notion of αS-paracompact subset modulo an ideal which is a generalization of both αS-paracompact subset [1] and α-paracompact subset modulo an ideal.

2 Preliminaries

Throughout this paper, (X, τ) always means a topological space on which no separation axioms are assumed unless explicitly stated. If A is a subset of (X, τ), we denote the closure of A and the interior of A by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively. Also, we denote by $\varphi(X)$ the class of all subset of X. A subset A of (X, τ) is said to be semi-open [11] (resp. semi-preopen [2]) if $A \subseteq \text{Cl}(|\text{Int}(A)|)$ (resp. $A \subseteq \text{Cl}(|\text{Cl}(A)|)$). The complement of a semi-open set is called a semi-closed set. The semi-closure of A, denoted by $\text{sCl}(A)$, is defined by the intersection of all semi-closed sets containing A. The collection of all semi-open sets of a topological space (X, τ) is denoted by $\text{SO}(X, \tau)$. A collection \mathcal{V} of subsets of a space (X, τ) is said to be locally finite, if for each $x \in X$ there exists $U_x \in \tau$ containing x and U_x intersects at most finitely many members of \mathcal{V}. A space (X, τ) is said to be paracompact (resp. S-paracompact [1]), if every open cover of X has a locally finite open (resp. semi-open) refinement which covers to X (we do not require a refinement to be a cover).

Lemma 2.1. Let (X, τ) be a space. Then, the following properties hold:

(1) If (A, τ_A) is a subspace of (X, τ), $B \subseteq A$ and $B \in \text{SO}(X, \tau)$, then $B \in \text{SO}(A, \tau_A)$ [11].

(2) If $A \in \tau$ and $B \in \text{SO}(X, \tau)$, then $A \cap B \in \text{SO}(X, \tau)$ [4].

(3) If (A, τ_A) is an open subspace of (X, τ), $B \subseteq A$ and $B \in \text{SO}(A, \tau_A)$, then $B \in \text{SO}(X, \tau)$ [5].

An ideal \mathcal{I} on a nonempty set X is a nonempty collection of subset of X which satisfies the following two properties:

(1) $A \in \mathcal{I}$ and $B \subseteq A$ implies $B \in \mathcal{I}$;

(2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

In this paper, the triplet (X, τ, \mathcal{I}) denote a topological space (X, τ) together with an ideal \mathcal{I} on X and will simply called a space. Given a space (X, τ, \mathcal{I}), a set operator $(.)^\ast : \varphi(X) \rightarrow \varphi(X)$, called the local function [10] of A with respect to τ and \mathcal{I}, is defined as follows: for $A \subseteq X$,
\[A^*(I, \tau) = \{ x \in X : U \cap A \notin I \text{ for every } U \in \tau(x) \}, \text{ where } \tau(x) = \{ U \in \tau : x \in U \}. \] When there is no chance for confusion, we will simply write \(A^* \) for \(A^*(I, \tau) \). In general, \(X^* \) is a proper subset of \(X \). The hypothesis \(X = X^* \) is equivalent to the hypothesis \(\tau \cap I = \emptyset \). According to [14], we call the ideals which satisfy this hypothesis \(\tau \)-boundary ideals. Note that \(\text{Cl}^*(A) = A \cup A^* \) defines a Kuratowski closure for a topology \(\tau^*(I) \), finer than \(\tau \). A basis \(\beta(I, \tau) \) for \(\tau^*(I) \) can be described as follows: \(\beta(I, \tau) = \{ V \setminus J : V \in \tau \text{ and } J \in I \} \). When there is no chance for confusion, we will simply write \(\tau^* \) for \(\tau^*(I) \) and \(\beta \) for \(\beta(I, \tau) \). In the sequel, the ideal of nowhere dense (resp. meager) subsets of \((X, \tau) \) is denoted by \(\mathcal{N} \) (resp. \(\mathcal{M} \)).

3 \(\alpha S \)-paracompactness modulo an ideal

In this section, we shall introduce and study the \(\alpha S \)-paracompact subsets modulo an ideal \(I \), which is a natural generalization of \(\alpha S \)-paracompact subsets. First recall some notions of paracompactness.

Definition 3.1. A subset \(A \) of a space \((X, \tau) \) is said to be \(\alpha \)-paracompact [3] (resp. \(\alpha \)-almost paracompact [9]) if for any open cover \(U \) of \(A \), there exists a locally finite collection \(V \) of open sets such that \(V \) refines \(U \) and \(A \subset \bigcup \{ V : V \in V \} \) (resp. \(A \subset \bigcup \{ \text{Cl}(V) : V \in V \} \)). A space \((X, \tau) \) is said to be paracompact (resp. almost-paracompact) if \(X \) is \(\alpha \)-paracompact (resp. \(\alpha \)-almost paracompact).

Definition 3.2. A subset \(A \) of a space \((X, \tau, I) \) is said to be \(\alpha \)-paracompact modulo \(I \) [7] (briefly \(\alpha \)-paracompact (mod \(I \))), if for any open cover \(U \) of \(A \), there exist \(I \in I \) and a locally finite collection \(V \) of open sets such that \(V \) refines \(U \) and \(A \subset \bigcup \{ V : V \in V \} \cup I \).

A space \((X, \tau, I) \) is said to be \(I \)-paracompact or paracompact with respect to \(I \) [16], if \(X \) is \(\alpha \)-paracompact modulo \(I \). In the present, it is called paracompact modulo \(I \) (or briefly paracompact (mod \(I \))).

Definition 3.3. A subset \(A \) of a space \((X, \tau) \) is said to be \(\alpha S \)-paracompact [1] if for any open cover \(U \) of \(A \), there exists a locally finite collection \(V \) of open sets such that \(V \) refines \(U \) and \(A \subset \bigcup \{ V : V \in V \} \). A space \((X, \tau) \) is said to be \(S \)-paracompact if \(X \) is \(\alpha S \)-paracompact.

Now, we give the definition of \(\alpha S \)-paracompact subset modulo an ideal \(I \).

Definition 3.4. A subset \(A \) of a space \((X, \tau, I) \) is said to be \(\alpha S \)-paracompact modulo \(I \) (briefly \(\alpha S \)-paracompact (mod \(I \))), if for any open cover \(U \) of \(A \), there exist \(I \in I \) and a locally finite collection \(V \) of semi-open sets such that \(V \) refines \(U \) and \(A \subset \bigcup \{ V : V \in V \} \cup I \).

A space \((X, \tau, I) \) is said to be \(I \)-S-paracompact or \(S \)-paracompact with respect to \(I \) [15], if \(X \) is \(\alpha S \)-paracompact modulo \(I \). In the present, it is called \(S \)-paracompact modulo \(I \) (or briefly \(S \)-paracompact (mod \(I \))). We say that \(A \) is \(S \)-paracompact (mod \(I \)) if \((A, \tau_\alpha, I_\alpha) \) is \(S \)-paracompact (mod \(I_\alpha \)) as a subspace, where \(\tau_\alpha \) is the relative topology induced on \(A \) by \(\tau \) and \(I_\alpha = \{ I \cap A : I \in I \} \).
Proposition 3.1. Let A be a subset of a space (X, τ) and \mathcal{I} an ideal on (X, τ). Then, the following properties hold:

1. If A is α-paracompact (mod \mathcal{I}), then A is αS-paracompact (mod \mathcal{I}).

2. Every $I \in \mathcal{I}$ is an αS-paracompact (mod \mathcal{I}).

3. (X, τ, \mathcal{I}) is S-paracompact (mod \mathcal{I}) if there exists $I \in \mathcal{I}$ such that $X - I$ is αS-paracompact (mod \mathcal{I}).

4. A is αS-paracompact if and only if it is αS-paracompact (mod $\{\emptyset\}$).

Proof. (1) Follows from the fact that every open set is semi-open.

(2) Suppose that there exists $I \in \mathcal{I}$ such that I is not αS-paracompact (mod \mathcal{I}). Then, there exists an open cover \mathcal{U} of I such that $I \not\subseteq \bigcup\{V : V \in \mathcal{V}\} \cup J$ for every $J \in \mathcal{I}$ and every locally finite collection \mathcal{V} which refines \mathcal{U}. This is a contradiction, because $I \in \mathcal{I}$ and $I \subseteq \bigcup\{V : V \in \mathcal{V}\} \cup J$. Thus, $(X - I) \cup I \subseteq \bigcup\{V : V \in \mathcal{V}\} \cup (J \cup I)$ and as $J \cup I \in \mathcal{I}$, we have (X, τ, \mathcal{I}) is S-paracompact (mod \mathcal{I}).

(3) Suppose that there exists $I \in \mathcal{I}$ such that $X - I$ is αS-paracompact (mod \mathcal{I}) and let \mathcal{U} be an open cover of X. Then, \mathcal{U} is an open cover of $X - I$ and hence there exist $J \in \mathcal{I}$ and a locally finite collection \mathcal{V} of semi-open sets such that \mathcal{V} refines \mathcal{U} and $X - I \subseteq \bigcup\{V : V \in \mathcal{V}\} \cup J$. Thus, $X = (X - I) \cup I \subseteq \bigcup\{V : V \in \mathcal{V}\} \cup (J \cup I)$ and as $J \cup I \in \mathcal{I}$, we have (X, τ, \mathcal{I}) is S-paracompact (mod \mathcal{I}).

(4) It is obvious. □

Now, we give some comments related with the Proposition 3.1.

Remark 3.1. According to Proposition 3.1(1), every α-paracompact (mod \mathcal{I}) (resp. αS-paracompact) subset is αS-paracompact (mod \mathcal{I}), and from this point of view, the notion of αS-paracompact (mod \mathcal{I}) subset is a natural generalization of the notion of α-paracompact (mod \mathcal{I}) (resp. αS-paracompact) subset. On the other hand, in Example 2.11 of [13], it is shows that there exists a semiregular Hausdorff space X and a regular closed subset M of X such that M is an αS-paracompact (mod $\{\emptyset\}$) subset of X, but M is not α-paracompact (mod $\{\emptyset\}$). Thus, the converse of Proposition 3.1(1) in general is not true.

Proposition 3.2. Let A be a subset of a space (X, τ) and \mathcal{I} an ideal on (X, τ). Then, the following properties hold:

1. If A is a semi-open and αS-paracompact (mod \mathcal{I}) set and \mathcal{I} is τ-boundary, then A is α-almost paracompact.

2. A semi-preopen set A is αS-paracompact (mod \mathcal{N}) if and only if it is α-almost paracompact.

Proof. (1) Let \mathcal{U} be any open cover of A. Then there exist $I \in \mathcal{I}$ and a locally finite collection $\mathcal{V} = \{V_\lambda : \lambda \in \Lambda\}$ of semi-open sets such that \mathcal{V} refines \mathcal{U} and $A \subseteq \bigcup\{V_\lambda : \lambda \in \Lambda\} \cup I$. Since A is
semi-open, $A \subset \text{Cl}(\text{Int}(A))$ and as I is τ-boundary, $\text{Int}(I) = \emptyset$. Now, by the locally finiteness of V, the collection $V' = \{\text{Int}(V_\lambda) : \lambda \in \Lambda\}$ is also locally finite, it follows that

$$A \subset \text{Cl}(\text{Int}(A)) \subset \text{Cl}\left(\text{Int}\left(\bigcup_{\lambda \in \Lambda} V_\lambda \cup I\right)\right)$$

$$\subset \text{Cl}\left(\text{Int}\left(\bigcup_{\lambda \in \Lambda} \text{Cl}(\text{Int}(V_\lambda)) \cup I\right)\right)$$

$$= \text{Cl}\left(\text{Int}\left(\bigcup_{\lambda \in \Lambda} \text{Cl}(\text{Int}(V_\lambda)) \cup \text{Int}(I)\right)\right)$$

$$= \text{Cl}\left(\text{Int}\left(\bigcup_{\lambda \in \Lambda} \text{Cl}(\text{Int}(V_\lambda))\right)\right)$$

$$\subset \text{Cl}\left(\bigcup_{\lambda \in \Lambda} \text{Cl}(\text{Int}(V_\lambda))\right) = \bigcup_{\lambda \in \Lambda} \text{Cl}(\text{Int}(V_\lambda)).$$

If $W_\lambda = \text{Int}(V_\lambda)$, then $A \subset \bigcup_{\lambda \in \Lambda} \text{Cl}(W_\lambda)$. Observe that W_λ is open for each $\lambda \in \Lambda$ and $W_\lambda \subset V_\lambda \subset U$ for some $U \in \mathcal{U}$, hence $W = \{W_\lambda : \lambda \in \Lambda\}$ is a locally finite open refinement of \mathcal{U}. Therefore, A is α-almost paracompact.

(2) Similar to the proof of (1), if A is semi-preopen, then

$$A \subset \text{Cl}(\text{Int}(\text{Cl}(A))) \subset \text{Cl}\left(\text{Int}\left(\bigcup_{\lambda \in \Lambda} V_\lambda \cup I\right)\right)$$

$$= \text{Cl}\left(\text{Int}\left(\bigcup_{\lambda \in \Lambda} V_\lambda \cup \text{Cl}(I)\right)\right)$$

$$= \text{Cl}\left(\text{Int}\left(\bigcup_{\lambda \in \Lambda} V_\lambda \cup \text{Int}(\text{Cl}(I))\right)\right)$$

$$= \text{Cl}\left(\text{Int}\left(\bigcup_{\lambda \in \Lambda} \text{Cl}(V_\lambda)\right)\right)$$

$$\subset \text{Cl}\left(\text{Int}\left(\bigcup_{\lambda \in \Lambda} \text{Cl}(\text{Int}(V_\lambda))\right)\right)$$

$$= \text{Cl}\left(\text{Int}\left(\bigcup_{\lambda \in \Lambda} \text{Int}(V_\lambda)\right)\right)$$

$$\subset \text{Cl}\left(\bigcup_{\lambda \in \Lambda} \text{Cl}(\text{Int}(V_\lambda))\right) = \bigcup_{\lambda \in \Lambda} \text{Cl}(\text{Int}(V_\lambda)).$$
Therefore, the proof follows. \hfill \square

As a consequence of Proposition 3.2, we obtain the following result.

Corollary 3.1. (Sanabria et al. [15]) Let \(I \) be an ideal on a space \((X, \tau)\). Then, the following properties hold:

1. If \(I \) is \(\tau \)-boundary and \((X, \tau)\) is \(S \)-paracompact (mod \(I \)), then \((X, \tau)\) is almost-paracompact.
2. \((X, \tau)\) is \(S \)-paracompact (mod \(N \)) if and only if it is almost-paracompact.

Theorem 3.1. If every open subset of a space \((X, \tau, I)\) is \(\alpha S \)-paracompact (mod \(I \)), then every subspace of \((X, \tau, I)\) is \(S \)-paracompact (mod \(I \)).

Proof. Suppose that \(A \) is any subspace of \((X, \tau, I)\) and let \(U = \{ U_\mu : \mu \in \Delta \} \) be a \(\tau_\Delta \)-open cover of \(A \). For every \(\mu \in \Delta \) there exists \(V_\mu \in \tau \) such that \(U_\mu = V_\mu \cap A \). Put \(V = \bigcup\{ V_\mu : \mu \in \Delta \} \), then \(V \in \tau \) and \(V = \{ V_\mu : \mu \in \Delta \} \) is a \(\tau \)-open cover of \(V \). By hypothesis, there exist \(I \in I \) and a \(\tau \)-locally finite collection \(W = \{ W_\lambda : \lambda \in \Lambda \} \) of \(\tau \)-semi-open sets such that \(W \) refines \(V \) and \(V \subseteq \bigcup\{ W_\lambda : \lambda \in \Lambda \} \cup I \). Then, we have

\[
A = \bigcup_{\mu \in \Delta} U_\mu = \bigcup_{\mu \in \Delta} (V_\mu \cap A) = \left(\bigcup_{\mu \in \Delta} V_\mu \right) \cap A = V \cap A \subseteq \left(\bigcup_{\lambda \in \Lambda} W_\lambda \cup I \right) \cap A = \bigcup_{\lambda \in \Lambda} (W_\lambda \cap A) \cup I_A,
\]

where \(I_A = I \cap A \in I_A \). If \(x \in A \), then there exists \(G_x \in \tau \) containing \(x \) such that \(W_\lambda \cap G_x = \emptyset \) for all \(\lambda \neq \lambda_1, \lambda_2, \ldots, \lambda_n \) and so \((W_\lambda \cap G_x) \cap A = \emptyset \) for all \(\lambda \neq \lambda_1, \lambda_2, \ldots, \lambda_n \). It follows that \((W_\lambda \cap A) \cap (G_x \cap A) = \emptyset \) for all \(\lambda \neq \lambda_1, \lambda_2, \ldots, \lambda_n \) and hence, the collection \(H = \{ W_\lambda \cap A : \lambda \in \Lambda \} \) is \(\tau_\lambda \)-locally finite. If \(W_\lambda \cap A \in H \), then \(W_\lambda \in W \) and since \(W \) refines \(\tau \), \(W_\lambda \subseteq V_\mu \) for some \(V_\mu \in V \), which implies that \(W_\lambda \cap A \subseteq V_\mu \cap A = U_\mu \in U \). Therefore, \(H \) refines \(U \). This shows that \(H = \{ W_\lambda \cap A : \lambda \in \Lambda \} \) is a \(\tau_\lambda \)-locally finite collection of \(\tau_\lambda \)-semi-open sets which refines \(U \) such that \(A \subseteq \bigcup\{ H : H \in H \} \cup I_A \). Thus, every subspace of \((X, \tau, I)\) is \(S \)-paracompact (mod \(I \)). \hfill \square

The following result is an immediate consequence of Theorem 3.2.

Corollary 3.2. If every open subset of a space \((X, \tau, I)\) is \(\alpha S \)-paracompact (mod \(I \)), then \((X, \tau, I)\) is \(S \)-paracompact (mod \(I \)).

Recall that a subset \(A \) of a space \((X, \tau)\) is said to be \(g \)-closed [12] if \(\text{Cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \in \tau \).

Theorem 3.2. If \((X, \tau, I)\) is \(S \)-paracompact (mod \(I \)) and \(A \) is a \(g \)-closed subset of \(X \), then \(A \) is \(\alpha S \)-paracompact (mod \(I \)).
Proof. Suppose that A is a g-closed subset of an S-paracompact (mod \mathcal{I}) space (X, τ, \mathcal{I}). Let $\mathcal{U} = \{U_\mu : \mu \in \Delta\}$ be an open cover of A. Since A is g-closed and $A \subset \bigcup \{U_\mu : \mu \in \Delta\}$, then $s\text{Cl}(A) \subset \bigcup \{U_\mu : \mu \in \Delta\}$. For each $\mu \notin \text{Cl}(A)$ there exists a τ-open set G_x containing x such that $A \cap G_x = \emptyset$. Put $\mathcal{U}' = \{U_\mu : \mu \in \Delta\} \cup \{G_x : x \notin \text{Cl}(A)\}$. Then \mathcal{U}' is an open cover of the S-paracompact (mod \mathcal{I}) space X and so, there exist $I \in \mathcal{I}$ and a locally finite collection $\mathcal{V} = \{V_\lambda : \lambda \in \Lambda\}$ of semi-open sets such that \mathcal{V} refines \mathcal{U} and $X = \bigcup \{V_\lambda : \lambda \in \Lambda\} \cup I$. For each $\lambda \in \Lambda$, either $V_\lambda \subset \bigcup U_\mu$ for some $\mu(\lambda) \in \Delta$ or $V_\lambda \subset G_x(\lambda)$ for some $x(\lambda) \notin \text{Cl}(A)$. Now, put $\Lambda_0 = \{\lambda \in \Lambda : V_\lambda \subset \bigcup U_\mu(\lambda)\}$. Then $\mathcal{V}' = \{V_\lambda : \lambda \in \Lambda_0\}$ is a collection of semi-open sets which is locally finite and refines \mathcal{U}. Also,

$$X - \bigcup_{\lambda \in \Lambda_0} V_\lambda = \left(\bigcup_{\lambda \in \Lambda} V_\lambda \cup I \right) - \bigcup_{\lambda \notin \Lambda_0} V_\lambda = \bigcup_{\lambda \notin \Lambda_0} V_\lambda \cup I$$

$$\subset \bigcup_{\lambda \notin \Lambda_0} G_x(\lambda) \cup I \subset (X - A) \cup I = X - (A - I),$$

which implies $A - I \subset \bigcup_{\lambda \in \Lambda_0} V_\lambda$ and hence $A \subset \bigcup_{\lambda \in \Lambda_0} V_\lambda \cup I$. This shows that A is αS-paracompact (mod \mathcal{I}).

Theorem 3.3. Let (X, τ, \mathcal{I}) be a space. Then, the following properties hold:

1. If A is an open αS-paracompact (mod \mathcal{I}) subset of (X, τ, \mathcal{I}), then A is S-paracompact (mod \mathcal{I}).

2. If A is a clopen subset of (X, τ, \mathcal{I}), then A is αS-paracompact (mod \mathcal{I}) if and only if it is S-paracompact (mod \mathcal{I}).

Proof. (1) Let A be an open αS-paracompact (mod \mathcal{I}) subset of (X, τ, \mathcal{I}). Let $\mathcal{U} = \{U_\mu : \mu \in \Delta\}$ be a τ_α-open cover of A. Since A is τ-open, we have \mathcal{U} is a τ-open cover of A and hence, there exist $I \in \mathcal{I}$ and a τ-locally finite collection $\mathcal{V} = \{V_\lambda : \lambda \in \Lambda\}$ of τ-semi-open sets which refines \mathcal{U} such that $A \subset \bigcup \{V_\lambda : \lambda \in \Lambda\} \cup I$. It follows that $A \subset \bigcup \{V_\lambda \cap A : \lambda \in \Lambda\} \cup (I \cap A)$ and so, the collection $\mathcal{V}_A = \{V_\lambda \cap A : \lambda \in \Lambda\}$ is a τ_α-locally finite τ_α-semi-open refinement of \mathcal{U} and is an \mathcal{I}_α-cover of A. Therefore, A is S-paracompact (mod \mathcal{I}).

(2) If A is a clopen and αS-paracompact (mod \mathcal{I}) subset of (X, τ, \mathcal{I}), then from (1) we obtain that A is S-paracompact (mod \mathcal{I}). Conversely, let $\mathcal{U} = \{U_\mu : \mu \in \Delta\}$ be a τ-open cover of A. The collection $\mathcal{V} = \{A \cap U_\mu : \mu \in \Delta\}$ is a τ_α-open cover of the S-paracompact (mod \mathcal{I}) subspace $(A, \tau_\alpha, \mathcal{I}_\alpha)$ and hence, there exist $I_A \in \mathcal{I}_\alpha$ and a τ_α-locally finite τ_α-semi-open refinement $\mathcal{W} = \{W_\lambda : \lambda \in \Lambda\}$ of \mathcal{V} such that $A = \bigcup \{W_\lambda : \lambda \in \Lambda\} \cup I_A$. It is easy to see that \mathcal{W} refines \mathcal{U} and by Lemma 2.1(3), we have that $W_\lambda \in \text{SO}(X, \tau)$ for each $\lambda \in \Lambda$. To show $\mathcal{W} = \{W_\lambda : \lambda \in \Lambda\}$ is τ-locally finite, let $x \in X$. Since $x \in A$, then there exists $O_x \in \tau_\alpha \subset \tau$ containing x such that O_x intersects at most finitely many members of \mathcal{W}. Otherwise $X \setminus A$ is a τ-open set containing x which intersects no member of \mathcal{W}. Therefore, \mathcal{W} is τ-locally finite and such that
\[A = \bigcup \{ W_\lambda : \lambda \in \Lambda \} \cup I_\lambda \subset \bigcup \{ W_\lambda : \lambda \in \Lambda \} \cup I \text{ for some } I \in \mathcal{I}. \text{ Thus, } A \text{ is } \alpha\text{-S-paracompact (mod } \mathcal{I}) \].

As a consequence of Theorem 3.3, we obtain the following result.

Corollary 3.3. Every clopen subspace of a S-paracompact (mod \(\mathcal{I} \)) space is S-paracompact (mod \(\mathcal{I} \)).

Lemma 3.1. Let \(A \) be a subset of a space \((X, \tau, \mathcal{I})\). If every open cover of \(A \) has a locally finite closed refinement \(\mathcal{V} \) such that \(A \subset \bigcup \{ V : V \in \mathcal{V} \} \cup I \) for some \(I \in \mathcal{I} \), then \(\mathcal{V} \) has a locally finite open refinement \(\mathcal{W} \) such that \(A \subset \bigcup \{ W : W \in \mathcal{W} \} \cup I \).

Proof. Let \(\mathcal{U} \) be an open cover of \(A \). By hypothesis, there exist \(I \in \mathcal{I} \) and a locally finite closed refinement \(\mathcal{V} = \{ V_\lambda : \lambda \in \Lambda \} \) of \(\mathcal{U} \) such that \(A \subset \bigcup \{ V_\lambda : \lambda \in \Lambda \} \cup I \). For each \(\lambda \in \Lambda \), there exists an open set \(G_\lambda \) containing \(\lambda \) such that \(\mathcal{G} = \{ G_\lambda : \lambda \in \Lambda \} \) is an open cover of \(A \) and again by hypothesis, there exist \(J \in \mathcal{I} \) and a locally finite closed refinement \(\mathcal{H} = \{ H_\mu : \mu \in \Delta \} \) of \(\mathcal{G} \) such that \(A \subset \bigcup \{ H_\mu : \mu \in \Delta \} \cup J \). Now, as \(\{ H_\mu : H_\mu \cap V_\lambda = \emptyset \} \subset \mathcal{H} \), then the collection \(\{ H_\mu : H_\mu \cap V_\lambda = \emptyset \} \) is locally finite and \(\bigcup \{ H_\mu : H_\mu \cap V_\lambda = \emptyset \} = \bigcup \{ \text{Cl}(H_\mu) : H_\mu \cap V_\lambda = \emptyset \} = \text{Cl}(\bigcup \{ H_\mu : H_\mu \cap V_\lambda = \emptyset \}) \), it follows that \(O_\lambda = X - \bigcup \{ H_\mu : H_\mu \cap V_\lambda = \emptyset \} \) is an open set and \(V_\lambda \subset O_\lambda \), for each \(\lambda \in \Lambda \). For each \(\mu \in \Delta \) and \(\lambda \in \Lambda \), we have

\[H_\mu \cap O_\lambda \neq \emptyset \iff H_\mu \cap V_\lambda \neq \emptyset. \quad (\ast) \]

Since \(\mathcal{V} \) refines \(\mathcal{U} \), for every \(\lambda \in \Lambda \) there exists \(U(\lambda) \in \mathcal{U} \) such that \(V_\lambda \subset U(\lambda) \). Put \(W_\lambda = O_\lambda \cap U(\lambda) \), then the collection \(\mathcal{W} = \{ W_\lambda : \lambda \in \Lambda \} \) is an open refinement of \(\mathcal{U} \). Furthermore, if \(x \in A \) there exists an open set \(D_x \) such that \(D_x \) intersects at most finitely many members of \(\mathcal{H} \), it follows from \((\ast)\) that \(\mathcal{W} \) is locally finite. Also, \(A \subset \bigcup \{ V_\lambda : \lambda \in \Lambda \} \cup I \subset \bigcup \{ O_\lambda \cap U(\lambda) : \lambda \in \Lambda \} \cup I = A \subset \bigcup \{ W_\lambda : \lambda \in \Lambda \} \cup I \).

The following theorem shows that, in the presence of the axiom of regularity, the notions of \(\alpha \)-paracompact (mod \(\mathcal{I} \)) and \(\alpha\text{-S-paracompact (mod } \mathcal{I}) \) subsets are equivalent.

Theorem 3.4. Let \(\mathcal{I} \) be an ideal on a regular space \((X, \tau)\) and \(A \) be a subset of \(X \). Then, \(A \) is \(\alpha \)-paracompact (mod \(\mathcal{I} \)) if and only if it is \(\alpha\text{-S-paracompact (mod } \mathcal{I}) \).

Proof. Necessity is obvious from the definitions. To show sufficiency, assume \(A \) is an \(\alpha\text{-S-paracompact (mod } \mathcal{I}) \) subset of \((X, \tau, \mathcal{I})\) and let \(\mathcal{U} = \{ U_\mu : \mu \in \Delta \} \) be an open cover of \(A \). For each \(x \in A \), there exists \(U(x) \in \mathcal{U} \) such that \(x \in U_\mu(x) \) and since \((X, \tau, \mathcal{I})\) is a regular space, there exists an open set \(V_x \) such that \(x \in V_x \subset \text{Cl}(V_x) \subset U_\mu(x) \). Thus, \(\mathcal{V} = \{ V_x : x \in A \} \) is an open cover of \(A \) and because \(A \) is \(\alpha\text{-S-paracompact (mod } \mathcal{I}) \), there exist \(I \in \mathcal{I} \) and a locally finite semi-open refinement \(\mathcal{W} = \{ W_\lambda : \lambda \in \Lambda \} \) of \(\mathcal{V} \) such that \(A \subset \bigcup \{ W_\lambda : \lambda \in \Lambda \} \cup I \). Since \(\mathcal{W} \) refines \(\mathcal{V} \), then for each \(\lambda \in \Lambda \) there exists \(x(\lambda) \in X \) such that \(W_\lambda \subset V_{x(\lambda)} \) and so, \(W_\lambda \subset \text{Cl}(W_\lambda) \subset \text{Cl}(V_{x(\lambda)}) \subset U_\mu(x(\lambda)). \) Obviously the collection \(\{ \text{Cl}(W_\lambda) : \lambda \in \Lambda \} \) is a locally finite closed refinement of \(\mathcal{U} \) such that
A ⊂ ∪(Cl(Wλ) : λ ∈ Λ) ∪ I. By Lemma 3.1, the open cover U of A has a locally finite open refinement H such that A ⊂ ∪(H : H ∈ H) ∪ I. Therefore, A is an α-paracompact (mod I) subset of (X, τ, I).

Proposition 3.3. If A is an αS-paracompact (mod I) subset of a space (X, τ, I) and B is a subset of X, there exist A ∩ Cl(B) in I, then A ∩ Cl(B) is αS-paracompact (mod I).

Proof. Let U be an open cover of A ∩ Cl(B). Then U′ = U ∪ {X − Cl(B)} is an open cover of A and so, there exist I ∈ I and a locally finite semi-open refinement V = (Vλ : λ ∈ Λ) of U′ such that A ⊂ ∪(Vλ : λ ∈ Λ) ∪ I. Then, ∂(Cl(B)) ⊂ ∂(B) ∈ I and

\[A ∩ Cl(B) ⊂ \bigcup_{λ ∈ Λ} Vλ ∩ Int(Cl(B)) ∪ J, \]

where J = [(∪(Vλ : λ ∈ Λ) ∩ ∂(Cl(B))) ∪ (∁ ∩ Cl(B))] ∈ I. Thus, the collection V′ = (Vλ ∩ Int(Cl(B)) : λ ∈ Λ) is a locally finite semi-open refinement of U such that A ∩ Cl(B) ⊂ ∪(V : V ∈ V′) ∪ J. Therefore, A ∩ Cl(B) is αS-paracompact (mod I).

The following result follows from Proposition 3.3 and the fact that the topological frontier of a semi-open (resp. semi-closed) set is nowhere dense.

Corollary 3.4. If A is an αS-paracompact (mod N) subset of a space (X, τ, I) and B is either semi-open or semi-closed, then A ∩ Cl(B) is αS-paracompact (mod N).

Remark 3.2. If \{Vλ : λ ∈ Λ\} is a locally finite collection of subsets of a space (X, τ), then the collection \{∂(Vλ) : λ ∈ Λ\} is locally finite.

According to [7], if I is an ideal on a space (X, τ) and \(\mathfrak{G}\) is the collection of all closed sets of (X, τ), then the collection \{A ⊂ X : Cl(A) ∈ I\} is an ideal contained in I. The ideal generated by the collection of whole closed sets in I is denoted by \(⟨I ∩ \mathfrak{G}\rangle\). It is clear that \(⟨I ∩ \mathfrak{G}\rangle = \{A ⊂ X : Cl(A) ∈ I\} \).

Proposition 3.4. Let A be a subset of a space (X, τ, I). If A is αS-paracompact (mod ⟨I ∩ \mathfrak{G}\rangle) and N ⊂ I, then Cl(A) is αS-paracompact (mod N).

Proof. Let U be an open cover of Cl(A). By hypothesis, there exist IA ∈ ⟨I ∩ \mathfrak{G}\rangle and a locally finite collection V = (Vλ : λ ∈ Λ) of semi-open sets such that V refines U and A ⊂ ∪(Vλ : λ ∈ Λ) ∪ IA. Then,

\[Cl(A) ⊂ \bigcup_{λ ∈ Λ} Cl(Vλ) ∪ Cl(IA) = \left(\bigcup_{λ ∈ Λ} Vλ \right) ∪ \left(\bigcup_{λ ∈ Λ} ∂(Vλ) \right) ∪ Cl(IA). \]

By Remark 3.2, the collection \{∂(Vλ) : λ ∈ Λ\} is locally finite and ∂(Vλ) ∈ N for each λ ∈ Λ. Thus, by [6, Lemma 2.1], we have ∪(∂(Vλ) : λ ∈ Λ) ∈ N ∩ I. Put I = ∪(∂(Vλ) : λ ∈ Λ) ∪ Cl(IA), then I ∈ I and Cl(A) ⊂ ∪(Vλ ∪ I). Therefore, Cl(A) is αS-paracompact (mod I).
Since \mathcal{N} is the ideal of nowhere dense subsets of (X,τ), $A \in \mathcal{N}$ if and only if $\text{Cl}(A) \in \mathcal{N}$. In the case that $\mathcal{I} = \mathcal{N}$, then $(\mathcal{I} \cap \mathcal{F}) = \mathcal{N}$. The following corollary is a direct consequence of Proposition 3.4.

Corollary 3.5. If A is an αS-paracompact (mod \mathcal{N}) subset of a space (X,τ,\mathcal{I}), then $\text{Cl}(A)$ is αS-paracompact (mod \mathcal{N}).

Lemma 3.2. [7] If $\{A_\lambda : \lambda \in \Lambda\}$ is a locally finite collection of meager sets of a space (X,τ), then $\bigcup\{A_\lambda : \lambda \in \Lambda\}$ is meager.

Theorem 3.5. If $\{A_\lambda : \lambda \in \Lambda\}$ is a locally finite collection of αS-paracompact (mod \mathcal{M}) subsets of a space (X,τ), then $\bigcup\{A_\lambda : \lambda \in \Lambda\}$ is αS-paracompact (mod \mathcal{M}).

Proof. Let \mathcal{U} be an open cover of $\bigcup\{A_\lambda : \lambda \in \Lambda\}$ and put $\mathcal{U}_\lambda = \{U \in \mathcal{U} : U \cap A_\lambda \neq \emptyset\}$ for each $\lambda \in \Lambda$. By the hypothesis, there exist $M_\lambda \in \mathcal{M}$ and a locally finite collection \mathcal{V}_λ of semi-open sets such that \mathcal{V}_λ refines \mathcal{U}_λ and $A_\lambda \subset \bigcup\{V : V \in \mathcal{V}_\lambda\} \cup M_\lambda$. Then, we have

$$A_\lambda \subset \bigcup_{V \in \mathcal{V}_\lambda} (V \cap \text{Int}(\text{Cl}(A_\lambda))) \cup \bigcup_{V \in \mathcal{V}_\lambda} (V \cap \partial(\text{Cl}(A_\lambda))) \cup M_\lambda.$$

For each $V \in \mathcal{V}_\lambda$ and each $\lambda \in \Lambda$, $V \cap \partial(\text{Cl}(A_\lambda))$ is nowhere dense and the collection $\{V \cap \partial(\text{Cl}(A_\lambda)) : V \in \mathcal{V}_\lambda, \lambda \in \Lambda\}$ is locally finite, so by [6, Lemma 2.1], the union of all elements of $\{V \cap \partial(\text{Cl}(A_\lambda)) : V \in \mathcal{V}_\lambda, \lambda \in \Lambda\}$ is a nowhere dense set. By Lemma 3.2, we obtain $\bigcup\{M_\lambda : \lambda \in \Lambda\} \in \mathcal{M}$ and

$$\mathcal{M} = \bigcup_{\lambda \in \Lambda} \bigcup_{V \in \mathcal{V}_\lambda} V \cap \partial(\text{Cl}(A_\lambda)) \cup \bigcup_{\lambda \in \Lambda} M_\lambda \in \mathcal{M}.$$

Now, the collection $\{V \cap \text{Int}(\text{Cl}(A_\lambda)) : V \in \mathcal{V}_\lambda, \lambda \in \Lambda\}$ of semi-open sets is locally finite and refines \mathcal{U} and also

$$\bigcup_{\lambda \in \Lambda} A_\lambda \subset \bigcup_{\lambda \in \Lambda} \bigcup_{V \in \mathcal{V}_\lambda} V \cap \text{Int}(\text{Cl}(A_\lambda)) \cup \mathcal{M}.$$

Therefore, $\bigcup\{A_\lambda : \lambda \in \Lambda\}$ is αS-paracompact (mod \mathcal{M}).

References

