Liolaemus lonquimayensis (Squamata: Liolaemidae), a new lizard species for Chile without precloacal pores

Liolaemus lonquimayensis (Squamata: Liolaemidae), una nueva especie de lagartija para Chile, sin poros precloacaes

GUSTAVO ESCOBAR HUERTA, JESSICA SANTIBÁÑEZ TORO & JUAN CARLOS ORTIZ*

Laboratorio de Herpetología, Departamento de Zoología, Universidad de Concepción, Casilla 160-C, Concepción, Chile.

*E-mail: jortiz@udec.cl

ABSTRACT

This study describes a new species of lizard of the genus *Liolaemus* (*L. lonquimayensis*), without precloacal pores, associated with the lava flows of the Lonquimay volcano in the Región de la Araucanía, Chile. This species belongs to the *elongatus* clade, and is a sister lineage of *L. elongatus*. *L. lonquimayensis* differs from its sister species, *L. elongatus*, in the total absence of precloacal pores, smaller maximum SVL (69.7 mm in *L. lonquimayensis* and 91.0 mm in *L. elongatus*), greater number of midline scales (88 in *L. lonquimayensis* and 77 in *L. elongatus*), body color light grey to black in *L. lonquimayensis* and light to dark brown in *L. elongates*. *L. lonquimayensis* has an black occipital band formed by small black lines arranged horizontally flanked by two lighter dorsal longitudinal bands, more separated towards the tail, forming incomplete rings. Finally, a combination of genetic, meristic and morphological characters distinguishes *L. lonquimayensis* from the other species of the *elongatus* clade.

KEYWORDS: *Elongatus* clade, *Liolaemus* nov. sp, Lonquimay volcano, taxonomy.

INTRODUCTION

Species are habitually used as the units of analysis in biogeography, ecology, macroevolution and biological conservation (Sites and Marshall, 2004). The current delimitation of species uses an integrative approach with multiple complementary methods, especially in taxonomic groups with complex evolutionary histories (Torres-Pérez et al. 2009; Padial et al. 2010). Mitochondrial DNA (mtDNA) has proven to be very useful to define species in vertebrate groups (Avise 2004). However, methods based on traditional morphology continue to be used, providing multiple advantages when molecular methods cannot be applied or provide insufficient evidence (Hillis & Wiens 2000, Wiens 2004).

The genus *Liolaemus* is the second most diversified group of lizards in the planet after *Anolis*, with 244 described species (Uetz & Hošek 2014). Its distribution is very wide, including Argentina, Bolivia, Brazil, Chile, Paraguay, Peru and Uruguay, from sea level to high-altitude Andean environments (Pincheira-Donoso et al. 2008). It is precisely...
the diversity of environments that this genus inhabits that
has modeled its adaptive radiation; it includes interesting
variations in development, genetic and morphological
patterns as well as in its rate of molecular evolution (Torres-
Pérez et al. 2009).

The majority of the species of the genus *Liolaemus* produce
pheromones involved in intraspecific communication by
means of structures called precloacal pores, present mainly
in males (Escobar et al. 2001; Labra et al. 2002). However,
within the genus *Liolaemus* there are some groups that have
species without these structures (the *capillitas*, *chillanensis*,
elongatus, *kriegi* and *pictus* groups) (Abdala et al. 2010,
Lobo et al. 2010, Esquerré et al. 2013). In this study we
describe a new species of the genus *Liolaemus* without
precloacal pores, associated with the lava flows of Volcán
Lonquimay.

MATERIALS AND METHODS

Four specimens were collected by hand, sacrificed by a
pericardiac injection of sodium pentothal in the lava flows
of the Volcán Lonquimay in the locality of Malalcahuello
(34°23′S, 71°37′W), between the communities of Curacautín and Lonquimay (Fig. 1). Each individual was
measured with a digital caliper to the nearest 0.1 mm, the
sex was determined. We also examined the scale pattern
and scale terminology following Ortiz (1981). Description
of color in life are based on noted taken in the field and
color photographs. All specimens were deposited in the
herpetological collection of the Museo de Zoología de la
Universidad de Concepción (MZUC). We obtained a sample
of liver tissue for molecular study and fixed in 95% ethanol
using the Wizard SV Genomic extraction kit (Promega).
Protocols for DNA extraction mtDNA cytochrome b
primer description PCR, and sequencing procedures follow
Victoriano et al. (2008). PCR products were purified and
sequenced at Macrogen, Inc. (www.macrogen.com). The
sequences obtained were edited in BIOEDIT v.7.0.9.0 (Hall
1999) and aligned in CLUSTAL X v.2.0 (Larkin et al. 2007).
See Appendix I for specimens used for molecular analyses.
The phylogenetic relations between the studied species
were estimated by Bayesian inference with the program
MRBAYES v3.1.2 (Huelsenbeck and Ronquist 2001), based
on the evolutionary model TIM2+I+G previously selected
by the JMODELTEST v0.1.1 program (Posada 2008). We
used the Markov Chain Monte Carlo (MCMC) method
to assure that trees were sampled proportionally to their
probability of occurrence under the chosen evolutionary
model. The analysis was performed using two independent
runs of 2×10^7 generations each, sampling each chain every
1000 generations. The first 25% of the 20000 trees was
discarded because the zone of stationary convergence had
not been reached. The remaining trees were used to produce
a consensus tree by the majority rule, which was graphed
in the program MEGA v4.0 (Tamura et al. 2007). We used
an *a posteriori* of probability of $P \geq 0.95$ as evidence of
significant support for a given clade (Huelsenbeck &
Ronquist 2001).

Figura 1. Sitio donde fue recolectado *Liolaemus lonquimayensis*. Volcán Lonquimay, Reserva Nacional Malalcahuello-Nalcas, entre las comunas de Curacautín y Lonquimay.
RESULTS

Liolaemus lonquimayensis sp. nov.

Type material. *Holotype*: MZUC-40365, adult male collected on the northern slopes of Volcán Lonquimay (38°23'16"S/71°37'42"W; elevation 1777 m) on 6 February 2013 by G. Escobar, J. Santibáñez, X. Fuentealba and F. Escobar. *Allotype*: MZUC-40366, adult female. Same collection data as the holotype. *Paratypes*: MZUC-40367, adult female; MZUC-40368 juvenile female. Same collection data as the holotype (Fig. 3).

Diagnosis. *Liolaemus lonquimayensis* sp. nov. is a member of the *elongatus* group, characterized by moderate body size; body elongated but robust. Scales small, subimbricate and not ending in a spine. Tail ringed, tending to circular in transverse section, length reaching 1.5 times SVL. Absence of sexual dimorphism and dichromatism. Wide dark band in the inferior flanks from the axilla to the ingle, absent or similar to the wide vertebral band. Abdominal melanism infrequent (some species have ventral scales of a tenuous gray color). Gular folds absent (some species have hemigular folds). The species is found in riparian and saxicolous habitats (Espinoza et al. 2000; Cei and Videla 2003). *L. lonquimayensis* and *L. thomarum* is distinguished from almost all species of the *elongatus* clade by the total absence of precloacal pores in males. (i.e., *L. chillanensis*, and *L. elongatus*).

Description of holotype. Adult male 69.74 mm (SVL), tail 111.6 mm. Axila-groin distances 33.0 mm. Head slightly longer (16.41 mm) than wide (12.33 mm); height 8.38 mm. Mouth width 11.11 mm. Length of anterior extremity, Meatus ovalate, height 3.19 mm. Transverse neck folds slightly wider than the head. Anterior extremities extended forward reach the tip of the mouth; length 23.23 mm. Posterior extremities extended forward reach the border of the meatus; length 43.02 mm. Foot length 20.6 mm. Base of the tail very widened; length 1.60 times the SVL. Precloacal pores absent.

Rostral scale hexagonal, 2.86 times taller than wide; in contact with six scales that include the anterior internasal scales. Small quadrangular scale between anterior and posterior internasal scales. Nasal scales hexagonal; nostrils located in the posterior part of both scales. 3-3 prenasal scales; 4-5 postnasal scales. 2-2 cantal scales separate 6-7 loreal scales from contact with the superior shields of the head. Preocular scale pentagonal, in its posterior part with an elongated subocular scale and 6-6 supralabial scales. 8-8 scales between last supralabial scale and inferior margin of

FIGURE 2. Liolaemus lonquimayensis, paratype adult female (MZUC-40367).

FIGURA 2. Liolaemus lonquimayensis, paratipo hembra adulta (MZUC-40367).
A new species of *Liolaemus* without precloacal pores: GUSTAVO ESCOBAR HUERTA ET AL.

meatus. 6-6 small ear scales. 14-14 temporal scales. 8-8 supraciliar scales compressed dorsoventrally. 7-7 larger supraocular scales and 29-29 smaller, surrounded by 14-14 circumorbital scales. Interparietal scale hexagonal, elongated towards the posterior extreme of the head and with a prominent pineal eye in the middle of this scale. Two large parietal scales behind the interparietal, separated posteriorly by a small occipital scale. Two pairs of frontoparietal scales, anterior more elongated than the posterior. Two frontal scales (anterior divided longitudinally), followed by two quadrangular prefrontal scales, 16 cephalic shields, three major shields in front of the prefrontals and in contact with four scales (1-1 infralabial and 1-1 postmental); 6-6 infralabial scales. 5-5 prefrontal scales. First pair of postmental scales large, separated posteriorly by two gular scales. Gular scales rounded, smooth and imbricated, more elongated towards the mental scale. Transverse folds of the neck and axillar region have small granular scales. Dorsal and ventral scales almost the same size; however, dorsal scales are subtriangular, keeled and imbricate while ventral scales are rounded and smooth. Keels less prominent toward the sides of the body, disappearing in the flanks. 80 scales from the parietals to the beginning of the tail and 84 in body midline. Dorsal scales of forelimb triangular, smooth and imbricate; slightly keeled in the forearm. Dorsum of the hand with rounded, smooth and imbricate scales. Ventral forearm scales rounded in the anterior zone and granular in the posterior zone, while forearm scales are subtriangular and imbricate. Fourth digit of hand with 24-24 transversal lamellae with three keels in each. Dorsal scales of femoral and tibial region subtriangular, slightly keeled and imbricate. Dorsal scales of the foot subtriangular, smooth and imbricate. Ventral scales of the femoral region subtriangular in the longitudinal anterior zone, rounded in the midzone and granular in the posterior zone. Ventral scales of the tibia subtriangular, smooth and imbricate. Palm of the foot with subtriangular, slightly keeled and imbricate scales. Fourth toe of hind foot with 30-30 transverse lamellae with three keels in each. Dorsal scales of tail triangular, keeled and imbricate.

Design and color. Dorsal background color light gray. Juveniles and adults with a black occipital band formed by small black lines arranged horizontally, more separated towards the tail, forming incomplete rings. Parietal and flank bands of the background color. Black horizontal lines over the temporal bands almost touch the horizontal lines of the occipital band. Dorsal zone of extremities with black vertical lines and light gray points. Ventral color lighter than dorsum, with random small black blotches. Adult females

![Figure 3. Type series of *Liolaemus lonquimayensis* in dorsal and ventral views.](image)

FIGURE 3. Type series of *Liolaemus lonquimayensis* in dorsal and ventral views.

FIGURA 3. Serie tipo de *Liolaemus lonquimayensis* en vista dorsal y ventral.
have a black abdominal blotch. Sexual dichromatism absent. Variation in paratypes. Size variation is given in Table 1. In meristic characters females differ from males (holotype) in: absence of quadrangular scale between anterior and posterior internasal scales. 2/3 prenasal scales, 3/4 posnasal scales. 4/6 loreal scales. 1/2 postocular scales. 5/7 supralabial scales. 6/8 scales between last supralabial and inferior of meatus. 4/5 small preauricular scales. 9/10 temporal scales. Seven supraciliar scales. Six large supraocular scales, 20/25 small supraocular scales and 11/12 circumorbital scales. 5/6 infralabial scales. 89-90 scales around midline. 25-27 lamellae in fourth digit of hand and 31/34 lamellae in fourth digit of foot.

Table 1. Morphometric variation in the type series. Characters: (SVL) snout-vent length, (AIL) axilla-ingle length, (HL) head length, (BL) mouth length, (MHW), maximum head width, (HH) head height, (LAE) length of anterior extremity, (LPE) length of posterior extremity (FL) foot length, (LT) tail length. The dash indicates that the tail was amputated.

<table>
<thead>
<tr>
<th>SEXO/STATE</th>
<th>MZUC 40365</th>
<th>MZUC 40366</th>
<th>MZUC 40367</th>
<th>MZUC 40368</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVL</td>
<td>69.7</td>
<td>69.4</td>
<td>68.3</td>
<td>45.5</td>
</tr>
<tr>
<td>AIL</td>
<td>33.0</td>
<td>35.7</td>
<td>36.1</td>
<td>20.8</td>
</tr>
<tr>
<td>HL</td>
<td>16.4</td>
<td>14.6</td>
<td>14.9</td>
<td>10.6</td>
</tr>
<tr>
<td>BL</td>
<td>11.1</td>
<td>9.5</td>
<td>10.0</td>
<td>6.8</td>
</tr>
<tr>
<td>MHW</td>
<td>12.3</td>
<td>10.7</td>
<td>11.0</td>
<td>7.5</td>
</tr>
<tr>
<td>HH</td>
<td>8.3</td>
<td>8.2</td>
<td>8.4</td>
<td>5.1</td>
</tr>
<tr>
<td>LAE</td>
<td>23.2</td>
<td>22.5</td>
<td>22.9</td>
<td>16.5</td>
</tr>
<tr>
<td>LPE</td>
<td>43.0</td>
<td>40.7</td>
<td>40.1</td>
<td>29.4</td>
</tr>
<tr>
<td>FL</td>
<td>20.6</td>
<td>20.0</td>
<td>20.4</td>
<td>14.6</td>
</tr>
<tr>
<td>LT</td>
<td>111.6</td>
<td>92.2</td>
<td>–</td>
<td>77.2</td>
</tr>
</tbody>
</table>

Figure 4. General view of the type locality of *Liolaemus lonquimayensis.*

Figura 4. Vista general de la localidad tipo de *Liolaemus lonquimayensis.*
Etymology. The specific name longimayensis refers to the Lonquimay volcano, the type locality of this Andean species.

Distribution. Liolaemus lonquimayensis is only known from the type locality.

Natural history. In its type locality, L. lonquimayensis is sympatric and synoptic with L. cristiani. Its habitat is flows of volcanic lava, with sparse vegetation and abundant basalt rocks (Fig. 4). Females are viviparous, giving birth to about two live offspring.

The phylogenetic analyses used a matrix of 521 pb per sequence. Of these, 204 bases were variable and 171 were parsimony-informative. The consensus tree obtained located Liolaemus lonquimayensis within the elongatus clade. This species is a sister lineage to L. elongatus, with high a posteriori probability (PP = 1.00) (Fig. 2). The genetic distance between these species was 2.9%.

DISCUSSION

L. lonquimayensis differs from its sister species, L. elongatus, in the total absence of precloacal pores, smaller maximum SVL (69.7 mm in L. lonquimayensis and 91.0 mm in L. elongatus), greater number of midline scales (88 in L. lonquimayensis and 77 in L. elongatus), body color light grey to black in L. lonquimayensis and light to dark brown in L. elongatus. Also, L. lonquimayensis has well-differentiated rings in the tail, which are not clearly distinguished in L. elongatus. L. chillanensis is differentiated from L. lonquimayensis because the males of the former have precloacal pores. Its dorsal pattern is characterized by a wide vertical band with small longitudinal black lines, while the dorsal design of L. lonquimayensis is composed of irregularly fused horizontal lines flanked by two lighter dorsal longitudinal bands. Finally, although L. thermarum does not have precloacal pores like L. lonquimayensis, it is differentiated from the latter species by a greater maximum SVL (85 mm), a lower number of mid-line scales (mean 73), a vertebral band formed by small and irregular black spots that are sometimes fused, forming a solid black vertebral band, and does not have rings on the tail as L. elongatus and L. chillanensis have.

Evolutionary relations in the elongatus clade have been widely discussed since its description. Lobo et al. (2010) assigned the following species to the elongatus clade: L. austromendocinus, L. elongatus, L. flavipiceus, L. gununakuna, L. parvus, L. petrophilus, L. punmahuida, L. thermarum and L. tregenzai. They also included in the clade the “capillitas clade”, composed of L. capillitas, L. dickracyi, L. heliodermis, L. talampaya, L. tulkas and L. umbrifer. However, the systematic proposal of these authors was not supported by a phylogenetic hypothesis. The “capillitas group”, along with the species L. austromendocinus, L. gununakuna, L. parvus and L.
petrophilus are recovered within the petrophilus clade and not the elongatus clade, as was indicated by Morando et al. (2003), Avila et al. (2004) and Quinteros et al. (2008). We recovered the kriegi clade (L. buergeri + L. kriegi) as the sister lineage of the elongatus clade (Fig. 5). However, L. cristiani does not form part of this clade as Lobo et al. (2010) proposed; L. cristiani groups with L. villaricensis, another species without precloacal pores. For this reason, the chillanensis group (L. chillanensis + L. villaricensis) observed by Lobo (2005) and formally proposed by Lobo et al. (2010) is rejected. L. chillanensis belongs to the elongatus group (Torres-Pérez et al. 2009, Avila et al. 2010), and L. cristiani groups with L. villaricensis. Finally, it must be noted that the species without precloacal pores do not form a monophyletic group, rejecting the “neuquensis group” (L. coeruleus, L. cristiani, L. neuquensis and L. thermarum) of Cej & Videla (2003).

ACKNOWLEDGEMENTS

This work was supported by project 99113.53-1 from the Dirección de Investigación, Universidad de Concepción. We thank the Corporación Nacional Forestal (CONAF) for permission to collect in the Reserve, and Ximena Fuentealba Benavides and Franco Escobar Huerta for collaboration in the field. We thank to Dr. L. Eaton helped translating earlier versions of this manuscript. We also thank L. J. Avila (CENPAT-CONICET, Argentina) for providing some of the sequences used in this study.

BIBLIOGRAPHY

QUINTEROS, A.S., ABDALA, C.S., GÓMEZ, J.M.D. & SCROCCHI,
A new species of *Liolaemus* without precloacal pores: GUSTAVO ESCOBAR HUERTA ET AL.

APPENDIX I. Specimens used for phylogenetic analyses

Outgroup: *Phymaturus indistinctus* LJAMM 2124

Recibido: 20.01.15
Aceptado: 29.05.15