Prediction of the Presence of Plantaris Tendon Through Examination of Palmaris Longus Tendon. Is There a Link?

Predicción de la Presencia del Tendón del Músculo Plantar Mediante el Examen del Tendón del Músculo Palmar Largo. ¿Hay una Relación?

Ozkan Kose*; Tolga Ege”; Bahtiyar Demiralp””; Tuba Sanal”””; Dogan Bek”” & Mustafa Basbozkurt”


SUMMARY: The purpose of this study was to investigate the relationship between palmaris longus (PL) and plantaris (P) tendons and test the clinical usefulness of symmetry patterns between these tendons in Turkish population. This prospective study comprised a total of 240 adult patients (120 men and 120 women) who were admitted to our outpatient clinic with bilateral knee complaints that required bilateral knee MR examination during two years. Standard test (Schaefer’s test, oppose the thumb to the little finger while flexing the wrist) was used to assess the presence of the PL tendon both with inspection and palpation. Knee MRI was used to determine the presence of P muscle belly on both sides. We have analyzed symmetric distribution pattern using Mc-Nemar test. The PL was absent unilaterally in 34 subjects (14.2%), while it was absent bilaterally in 17 subjects (7.1%). The P was absent unilaterally in 51 subjects (21.3%), while it was absent bilaterally in 10 subjects (4.2%). If PL was absent in one hand, the chance of having an ipsilateral P tendon was 70.6%. If PL was present in one hand, the chance of having an ipsilateral P tendon was 87.6%. The Mc-Nemar test for symmetry yielded a p value of 0.841 for ipsilateral PL and P muscles. A clear-cut link between Palmaris longus and plantaris tendons could not be demonstrated in this study. Both muscles show different variations independent from each other.

KEY WORDS: M. Palmaris longus; M. Plantaris; Tendon graft; Prevalence.

INTRODUCTION

Palmaris longus (PL) and plantaris (P) tendons are the most commonly utilized donor tendons in plastic and hand surgery due to their sufficient diameter, length, accessibility and low donor site morbidity (Wehbé, 1992). Furthermore, harvesting these tendons is considered to have no effect on residual limb functions (Sebastin et al., 2005a). Both muscles are accepted as phylogenetically retrogressive muscles which exhibit distinct structural variations, however entire absence of PL and P tendons is relatively common variations in general population. Several studies have documented the prevalence of absence of these tendons in different ethnic populations (Aragao et al., 2010; Kose et al., 2009; Sebastin et al., 2005b; Herzog, 2011; Thompson et al., 2001).

When PL tendon is planned to be harvested, it can be easily detected with a simple physical examination test due to its subcutaneous placement (Mishra, 2001). In case of bilateral absence of PL or insufficiency of the harvested PL tendon during the surgery, surgeons may need to harvest P tendon as an alternative. On the other hand, there is no physical examination test to detect whether P tendon is present or not. It is advisable to confirm the presence of P tendon to avoid unnecessary dissections. This can be achieved with either ultrasound or magnetic resonance imaging (Mackay & McCulloch, 1990; Saxena & Bareither, 2000).

However, radiological evaluation may not be readily available in certain circumstances, moreover it is time consuming and increases the total cost of the treatment. PL and P muscles are considered homologous muscles of the upper and lower extremity (George, 1953). Therefore, these tendons may be simultaneously present or absent. This
hypothesis was tested previously in few numbers of studies in different ethnic groups (George; Harvey et al., 1983; Vanderhooft, 1996; Moss, 1988; Venter et al., 2009). However, the prevalence of absence of these tendons shows great variations among populations. The purpose of this study is to investigate the relationship between PL and P tendons and test the clinical usefulness of symmetry patterns between these tendons in Turkish population.

MATERIAL AND METHOD

This prospective study comprised a total of 240 adult patients (120 men and 120 women) who were admitted to our outpatient clinic with bilateral knee complaints that required bilateral knee MR examination between August 2011 and August 2013. This study was carried out according to the Declaration of Helsinki and Institutional Review Board approved the study protocol and all patients gave informed consent prior to inclusion.

At initial admission all patients were examined to assess the presence of the PL tendons. Subjects with a history of injury, past surgical procedure, disease or abnormality of the upper and lower limbs which would preclude examination for the presence of the P and PL tendons were excluded from the study. Standard test (Schaefer’s test, oppose the thumb to the little finger while flexing the wrist) was used to assess the presence of the PL tendon both with inspection and palpation (Schaefer, 1909). If the tendon was not visualized or palpable, an additional test (Mishra’s second test, abduct the thumb against resistance with the wrist in slight flexion) was used to confirm the absence (Mishra). If both tests were negative, it was considered absent (Fig. 1). Knee MRI was used to determine the presence of P tendon on both sides. P tendon was accepted as present when the muscle belly was detected to have a separate fascial sheath deep to the lateral head of gastrocnemius on T1-weighted axial MRI sections. If the muscle belly cannot be detected on serial sections, it was considered absent (Fig. 2). The presence of P tendon was evaluated and recorded by two independent radiologists who were specialist on musculoskeletal radiology at separate times and any discrepancy was subsequently resolved by consensus.

Finally, we have collected the data about the existence of PL through physical examination and P through MRI examination in the same subject. Data on patient age and sex were recorded from hospital records. Continuous variables were stated as mean and standard deviation and categorical variables as percentage and frequency distribution. We have analyzed symmetric distribution pattern using McNemar test. A p value less than 0.05 was set as significant.

Fig. 1. Photograph of a 32-year-old male patient who has bilateral Palmaris longus tendons (black arrows).

Fig. 2. T1 weighted axial MR images of both knees of the same subject. White asterix show the lateral head of gastrocnemius on both sides. While plantaris muscle belly is not observed on the right side, it is well delineated with a separate fascial sheath on the left side (white arrow).
RESULTS

We analyzed 240 patients (120 men and 120 women) with a mean age of 37.5 ± 12.3 (range, 17-66). The PL tendon was absent unilaterally in 34 subjects (14.2%), while it was absent bilaterally in 17 subjects (7.1%). The remaining 189 subjects (78.8%) had both PL tendons. The P tendon was absent unilaterally in 51 subjects (21.3%), while it was absent bilaterally in 10 subjects (4.2%), and in remaining 179 subjects (74.6%) both P tendons were present. Among all subjects, there were only 2 subjects (0.8%) who lacked both PL and P tendons. If PL was absent in one hand, the chance of having an ipsilateral P tendon was 70.6%. If PL was present in one hand, the chance of having an ipsilateral P tendon was 87.6%. The accuracy of assumption of symmetric presence and absence of both tendons on ipsilateral extremities was 79.3%. Cross-tabulation of PL and P tendons in ipsilateral extremities is presented in Table I. The McNemar test for symmetry yielded a p value of 0.841 for ipsilateral PL and P muscles.

DISCUSSION

Results of this study showed that when PL is present in one hand the chance of having an ipsilateral P is 87.6%. In reverse situation, when PL is absent in one hand the chance of having an ipsilateral P is 70.6%. Therefore assumption of symmetric distribution of these tendons on ipsilateral extremities may lead to false positive and false negative results. In other words, prediction of the presence of P tendon through examination of PL tendon is misleading and has a high margin of error. A clear-cut link between PL and P tendons could not be demonstrated in present study. Both muscles show different variations independent from each other and P muscle cannot be predicted on the basis of presence or absence of the PL muscle.

Table I. Cross tabulation of PL and P tendons in ipsilateral members.

<table>
<thead>
<tr>
<th></th>
<th>M. plantaris</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>M. palmaris longus Absent</td>
<td>20</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>29.4%</td>
<td>70.6%</td>
</tr>
<tr>
<td></td>
<td>28.2%</td>
<td>11.7%</td>
</tr>
<tr>
<td></td>
<td>4.2%</td>
<td>10.0%</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>361</td>
</tr>
<tr>
<td>M. palmaris longus Present</td>
<td>71</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>12.4%</td>
<td>87.6%</td>
</tr>
<tr>
<td></td>
<td>71.8%</td>
<td>88.3%</td>
</tr>
<tr>
<td></td>
<td>10.6%</td>
<td>75.2%</td>
</tr>
<tr>
<td></td>
<td>14.8%</td>
<td>85.2%</td>
</tr>
</tbody>
</table>

Table II. Previously published anatomic studies that reported the relationship between PL and P tendons in relevant literature.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Number of matched limbs</th>
<th>M. palmaris longus</th>
<th>M. plantaris</th>
<th>Symmetric pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>George</td>
<td>1953</td>
<td>552</td>
<td>21.7%</td>
<td>7.6%</td>
<td>None</td>
</tr>
<tr>
<td>Harvey et al.</td>
<td>1983</td>
<td>1316</td>
<td>20.9%</td>
<td>18.2%</td>
<td>None</td>
</tr>
<tr>
<td>Moss</td>
<td>1988</td>
<td>300</td>
<td>11.6%</td>
<td>5%</td>
<td>None</td>
</tr>
<tr>
<td>Venderhooft</td>
<td>1996</td>
<td>372</td>
<td>10.8%</td>
<td>4.8%</td>
<td>None</td>
</tr>
<tr>
<td>Venter et al.</td>
<td>2009</td>
<td>302</td>
<td>14.2%</td>
<td>11.5%</td>
<td>None</td>
</tr>
<tr>
<td>Current study</td>
<td>2013</td>
<td>480</td>
<td>21.2%</td>
<td>25.4%</td>
<td>None</td>
</tr>
</tbody>
</table>

Our findings are consistent with all these previous studies, and there seems no relationship between these tendons.
There are some strengths and limitations of this study. Present study only provides information about the absence or presence of these tendons but not about their quality regarding length and width. However, not only their presence but also their sufficiency to be used as a tendon graft is crucially important (Jakubietz et al., 2011). The P tendon was detected with the use of knee MR images which is not totally a reliable method. However, two radiologists evaluated all knee images in order to decrease the rate of misinterpretation. Furthermore, absence of PL tendon was evaluated by the same investigator and a second test was performed in case of suspicion.

In conclusion, the presence or the absence of P muscle cannot be predicted through examination of PL muscle. Each muscle presents variations independent from each other.


REFERENCES


Correspondence to:
Dr. Ozkan Kose
Kultur mah. 3805. sk Durukent Sitesi
F Blok Daire 4, Kepez, Antalya TURKEY
Received: 03-12-2013
Accepted: 03-03-2014
Email: drozkankose@hotmail.com

592