SYNTHESIS OF 2-(2-(HYDROXYMETHYL)PHENYL)ETHANOL DERIVATIVES AS POTENTIAL ANTIBACTERIAL AGENTS

P. MANIVELa,b, F. NAWAZ KHANa*

Organic Chemistry Division, School of Science and Humanities, VIT University, Vellore, Tamil Nadu, India
Syngene International Limited, Bangalore, Karnataka, India.

(Received: July 28, 2008 - Accepted: April 11, 2009)

ABSTRACT

Reaction of 3-substituted isocoumarins (1a-h) with excess of sodium borohydride in methanol gave the corresponding 2-(2-(hydroxymethyl)phenyl)ethanol derivatives (2a-h). Antimicrobial activities of synthesized compounds were measured, using Gram-negative (Escherichia coli, Salmonella typhi, Proteus mirabilis) and Gram-positive bacteria (Bacillus cereus, Staphylococcus aureus).

Key words: Isocoumarin, sodium borohydride, diol, antimicrobial properties.

INTRODUCTION

Synthesis of variety of compounds like carbocyclic, heterocyclic compounds and various aromatic compounds can be effected from isocoumarins intermediates. The hydroxyl structural moiety was found in numerous pharmacologically active compounds and therefore represents an interesting template for combinatorial as well as medicinal chemistry. An increasing number of new isocoumarins in nature and increasing importance of diol derivatives have stimulated our research group a continued interest for synthesis of 2-(2-(hydroxymethyl)phenyl)ethanols from the precursor isocoumarins. Recently, several methods have been reported for the synthesis of diols such as palladium catalyzed reactions, electrophilic aromatic substitution, cyclization of 2-allyl- and alkenyl benzoic acid, etc. In continuous of research interests, present investigation aimed at simplified reaction of isocoumarins and sodium borohydride to the corresponding 2-(2-(hydroxymethyl)phenyl)ethanol derivatives without isolation of intermediate dihydroisocoumarins. (Scheme 1)

EXPERIMENTAL

The materials were purchased from Sigma–Aldrich and Merck and were used without any additional purification. All reactions were monitored by thin layer chromatography (TLC) on gel F254 plates. The silica gel (230–400 meshes) for column chromatography was purchased from Spectrochem Pvt. Ltd., India. Melting points were taken in open capillary tubes and are corrected with reference to benzoic acid. IR spectra were recorded on Nucon Infrared spectrophotometer. 1H NMR and 13C NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl3 or DMSO-d6 (with TMS for 1H NMR and DMSO for 13C NMR as internal references). Elemental analyses of all compounds were performed on Elementar Vario Micro CHNS analyzer. GCMS analyses were performed with Agilent GCMS-5973 Inert MSD series.

General procedure for synthesis of 2-(2-(hydroxymethyl)phenyl)ethanol derivatives from isocoumarins

Isocoumarins used in our reactions were obtained from homophthalic acid and different acid chloride.

RESULTS AND DISCUSSION

In this work we report synthesis of potential antibacterial diol derivatives...
containing the phenylethanol structural moiety. Thus, the reaction between the isocoumarins (1) and sodiumborohydride in methanol at 50°C gave a single product (2). The structure of 2 was confirmed on the basis of IR spectrum which showed the absence of any C=O and C=C stretching of starting material isocoumarin, IR spectra of diols showed peaks values at 3400-3070 (due to OH), 3000-3080 (due to Arm CH) 1500 -1420 (due to C=CH), 1019 (due to C=O). GCMS analysis of diols formed in the reduction of isocoumarins have shown mass peaks at m/e M+ 18 peaks, base peak at m/e 104 for all compounds, 2a-2h corresponding to the water elimination and C6H4CO- respectively along with other fragmentation peaks. The present paper also included natural characterization of these compounds, 2a-2h.

Analysis Data

1-(-2-(hydroxymethyl)phenyl)hexan-2-01, 2a, Gummy solid, IR (KBr) ν 3323 (OH), 3064, 3020, 2850, 1455, 1424 (C=C), 1011 cm⁻¹ (C-O); δ H NMR (400 MHz, DMSO – d₆): δ 7.73 (q, J = 2.98 Hz, 1H), 7.15 (d, J = 2.60 Hz, 3H), 5.07 (t, J = 5.42 Hz, 1H), 4.59- 4.46 (m, 3H), 3.59-3.56 (m, 1H), 2.64 (t, J = 3.6 Hz, 2H), 1.36 (m, J = 4.63 Hz, 2H) 1.23 (m, J = 6.74 Hz, 4H), 0.84 (t, J = 7.06 Hz, 3H); ¹³C NMR (100 MHz, DMSO – d₆) δ 140.70, 137.92, 130.55, 128.79, 127.01 126.09 (Aromatic carbons). 71.29, 63.27, 2 X37.37, 28.01, 22.72 (Aliphatic carbons). 15.40. GCMS- 190 (M-18); C₂₃H₂₉O. Mol. Wt.: 283.46, Calculated C, 74.92; H, 9.17; O, 13.54 %.

2-(-2-(hydroxymethyl)phenyl)-1-phenylethanol, 2b Colourless solid, mp 90°C, IR (KBr) ν 3382, 3319, 3247, 3174, 3050, 2920, 1674, 1644, 1592, 1451, 1373, 1305, 1264, 1202, 1135 cm⁻¹ (C=O); δ H NMR (400 MHz, DMSO – d₆) : δ 7.32- 7.22 (m, 5H), 7.15 (d, J = 5.64 Hz, 4H), 5.37 (d, J = 4.52 Hz, 1H), 5.09 (t, J = 5.34 Hz, 1H), 4.74 (m, J = 4.42 Hz, 1H), 4.44 (m, J = 7.34 Hz, 2H), 2.89 (m, J = 6.76 Hz, 2H); ¹³C NMR (100 MHz, DMSO – d₆) δ 146.55, 140.84, 137.37, 130.89, 128.37, 2X128.01, 2X127.22, 127.01, 126.31, 126.28 (Aromatic carbons). 73.94, 61.55, 42.60 (Aliphatic carbons). GCMS- 210 (M-18); C₂₃H₂₉O. Mol. Wt.: 228.29, Calculated C, 79.82; H, 7.06; O, 14.12, Found C, 78.65; H, 6.92; O, 13.98%. (C₂₃H₂₉O) (C=O). GCMS-240 (M-18), C₂₃H₂₉O. Mol. Wt.: 258.31, Calculated C, 74.39; H, 7.06; O, 11.46.

1-(furanyl-2-yl)-2-(2-(hydroxymethyl)phenyl)ethanol, 2g Gummy solid, IR (KBr) ν 3368 (OH), 3064, 2852, 1492, 1451 (C=O), 1010 (C-O) cm⁻¹. δ H NMR (400 MHz, DMSO – d₆): δ 8.76 (s, 1H), 7.56 (t, J = 0.90 Hz, 1H), 7.33 (t, J = 4.42 Hz, 1H), 7.12 (m, 3H), 6.35 (q, J = 1.62 Hz, 1H), 6.20 (d, J = 3.12 Hz, 1H), 5.43 (d, J = 5.48 Hz, 1H), 5.07 (t, J = 5.32 Hz, 1H), 4.71 (m, J = 3.88 Hz, 1H), 4.51 (m, J = 5.75 Hz, 2H), 3.01 (m, J = 6.56 Hz, 2H); ¹³C NMR (100 MHz, DMSO – d₆) δ 158.11, 142.02, 140.85, 136.64, 130.54, 127.95, 120.07, 123.09, 110.60, 106.01 (Aromatic carbons). 76.44, 61.37, 38.73 (Aliphatic carbons). GCMS-200 (M-18); C₂₃H₂₉O. Mol. Wt.: 218.25, Calculated C, 71.54; H, 6.47; O, 21.99, Found C, 71.00; H, 6.39; O, 21.88.

2-(2-(hydroxymethyl)phenyl)-1-(thiophen-2-yl)ethanol, 2h Gummy solid, IR (KBr) ν 3342 (OH), 3054, 2827, 1492, 1451 (C=O), 1034 (C-O), 748, 699 cm⁻¹. δ H NMR (400 MHz, DMSO – d₆): δ 7.37– 7.32 (m, 2H), 7.15 (d, J = 6.32 Hz, 3H), 6.92 (m, 1H), -6.84 (d, J = 3.12 Hz, 1H), 5.74 (t, J = 3.28 Hz, 1H), 5.08 (t, J = 5.32 Hz, 1H), 4.98 (m, J = 4.57 Hz, 1H), 4.52 (q, J = 6.02 Hz, 1H), 4.45 (q, J = 6.20 Hz, 1H), 2.98 (d, J = 6.68 Hz, 2H); ¹³C NMR (100 MHz, DMSO – d₆) δ 143.54, 140.79, 137.38, 136.08, 130.73, 128.88, 127.92, 2X126.95, 126.23 (Aromatic carbons), 73.71, 61.45, 42.57 (Aliphatic carbons). GCMS-216(M-18), C₂₃H₂₉O. Mol. Wt.: 234.31, Calculated C, 66.64; H, 6.02; O, 13.66; S, 12.24, Found C, 66.52; H, 5.89; O, 13.54.

Antibacterial activity

The in vitro antibacterial screening of synthesized compounds 2a-h were evaluated against selected Gram-positive organisms viz. Bacillus cereus, Staphylococcus aureus and Gram-negative bacteria viz. Escherichia coli, Salmonella typhi, Proteus mirabilis by Agar well diffusion method. Cultures of bacteria were grown on nutrient broth (HiMedia) at 37°C for 12 – 14 hr and were maintained on respective agar slants at 4°C. Nutrient agar was poured onto a plate and allowed to solidify. Test compounds (DMSO solutions) of 4mg/ml concentration were used as stock solution from this 50 or 10 μl was loaded to each well of 10 mm diameter. The plates were then kept at 5°C for 1 h then transferred to an incubator maintained at 36°C. The width of the growth inhibition zone was measured after 24 h incubation. The activity studies have been carried out with two different concentration and triplicate measurements (Table 2).

Table 1- Reduction of isocoumarins using Sodium borohydride.

<table>
<thead>
<tr>
<th>Substrate 1 and Product 2</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>77</td>
</tr>
<tr>
<td>6</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>73</td>
</tr>
</tbody>
</table>

All products were identified by ¹³C NMR, GCMS, NMR and mass spectra.

Table 2.- Antimicrobial activity of synthesized compounds (Zones of inhibition in mm).

<table>
<thead>
<tr>
<th>Bacterial Strains</th>
<th>2a (µL)</th>
<th>2b(µL)</th>
<th>2c (µL)</th>
<th>2d (µL)</th>
<th>2e (µL)</th>
<th>2f (µL)</th>
<th>Streptomycin 100 µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteus mirabilis</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>13 14 31</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>18</td>
<td>15</td>
<td>17</td>
<td>15 10 16 11 17 29</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>12</td>
<td>17</td>
<td>17</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>12 15 21 14 18 28</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- 16 - - - 38</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>17</td>
<td>20</td>
<td>18</td>
<td>23</td>
<td>16</td>
<td>18</td>
<td>- 14 - 12 18 28</td>
</tr>
</tbody>
</table>

Zone of inhibition in mm

CONCLUSION

In conclusion, we have presented a facile route to diol derivatives 2a-h starting from isocoumarin derivatives, 1. The synthesized diol derivatives showed good antibacterial activity against Staphylococcus aureus.

REFERENCES