INFLUENCE OF BATH TEMPERATURE AND PH VALUE ON PROPERTIES OF CHEMICALLY DEPOSITED Cu₄Sn₄ Thin Films

ANUAR KASSIM¹,*, TAN WEE TEE², ATAN MOHD. SHARIF³, DZULKKEFLY KUANG ABDULLAH⁴, MD. JELAS HARON⁵, HO SOON MIN⁶ AND NAGALINGAM SARAVANAN⁷

¹Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
²Department of Bioscience and Chemistry, Faculty of Engineering and Science, Universiti Tun Hussein Onn, 86400 Batu Pahat, Johor, Malaysia.
³Department of Chemistry, Universiti Tun Hussein Onn, 86400 Batu Pahat, Johor, Malaysia.
⁴Department of Chemistry, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia.
⁵Faculty of Science, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia.
⁶Faculty of Science, Universiti Malaysia Pahang, 26300 Pekan, Pahang, Malaysia.
⁷Department of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

(Received: December 31, 2008 - Accepted: May 27, 2009)

ABSTRACT

Thin films of Cu₄Sn₄ semiconductors were prepared by chemical bath deposition technique in aqueous solutions. The effects of various bath temperatures (40, 50 and 60 °C) and pH values (pH 0.5, pH 1.0 and pH 1.5) on growth of films were reported. The structure and morphology characteristics of thin films of Cu₄Sn₄ grown on indium tin oxide glass substrates were investigated by X-ray diffraction and atomic force microscopy techniques. The optical properties were measured to determine the transition type and band gap value. The X-ray diffraction data showed that the most intense peak at 2θ = 30.2° which belongs to (221) plane of Cu₄Sn₄. The films deposited at 50 °C were found to have the best photoresponse activity and smaller crystal size. At pH 1.5, the film showed well-covered entire substrate surface and the highest absorption values in AFM measurement. The thin films produced were found to be polycrystalline with orthorhombic structure. The X-ray diffraction pattern of Cu₄Sn₄ showed seven peaks related to the compound of Cu₄Sn₄ thin films. The peaks occurred at 2θ = 28.6°, 30.1°, 35.2°, 38.8°, 42.9°, 47.2° and 50.6° which attributed to the (102), (211), (220), (221), (331), (040) and (711) planes, respectively. The sequence of constant illumination and dark period were performed on the PEC cell to study the effect on photoactivity behavior. A halogen lamp (300 W, 120 V) was used for illuminating the electrode. Optical absorption study was carried out using the Perkin Elmer UV/Vis Lambda 20 Spectrophotometer. The film-coated indium doped tin oxide glass was placed across the sample radiation pathway while the uncoated ITO glass was put across the reference path. The absorption data were manipulated for the determination of the band gap energy, E_g.

RESULTS AND DISCUSSION

Fig. 1 shows the XRD patterns of the films deposited at pH 1.2 at different chemical bath temperatures. All the samples showed a polycrystalline in nature. The patterns displayed diffraction peak at 2θ = 21.2° which corresponds to (211) plane of indium tin oxide substrate for all samples. There are seven peaks occurred at 2θ = 28.6°, 30.1°, 35.2°, 38.8°, 42.9°, 47.2° and 50.6° which attributed to the (102), (211), (220), (221), (331), (040) and (711) planes, respectively. All these peaks are related to the compound of Cu₄Sn₄ of orthorhombic structure (a = 13.5580 Å, b = 7.6810 Å, c = 6.4120 Å, α = β = γ = 90°). As the chemical bath temperature is increased from 50 °C to 60 °C, the intensity of diffraction peak (221) decreases and this peak becomes broader indicating poor crystallinity of the sample.

Keywords: Semiconductor, thin films, band gap, chemical bath deposition

INTRODUCTION

Interest on the preparation and study of physical properties of ternary chalcogenide compounds for their possible applications in optoelectronic devices, solar cells, infrared radiation. Topography was measured by using an atomic force microscopy (Quesant Instrument Corporation, Q-Scope 250) operating in contact mode, with Si₃N₄ cantilever. Photoelectrochemical (PEC) experiments were performed using a [Fe(CN)₆]³⁻/[Fe(CN)₆]⁴⁻ redox system, by performing linear sweep voltammetry between -500 to -1000 mV at a sweep rate of 10 mV/s. The Ag/AgCl electrode and platinum wire were used as reference electrode and counter electrode, respectively. The sequence of constant illumination and dark period were performed on the PEC cell to study the effect on photoactivity behavior. A halogen lamp (300 W, 120 V) was used for illuminating the electrode. Optical absorption study was carried out using the Perkin Elmer UV/Vis Lambda 20 Spectrophotometer. The film-coated indium doped tin oxide glass was placed across the sample radiation pathway while the uncoated ITO glass was put across the reference path. The absorption data were manipulated for the determination of the band gap energy, E_g.

EXPERIMENTAL

All the chemicals used for the deposition were analytical grade. It includes copper sulfate (CuSO₄), tin chloride (SnCl₂), sodium thiosulfate (Na₂S₂O₃), diosodium ethylenediaminetetraaacetic acid (Na₂EDTA) and hydrochloric acid (HCl). All the solutions were prepared in deionized water (Alpha-Q Millipore). 10 ml of CuSO₄ (0.05M) solution was added into 10 ml of SnCl₂ (0.05M) solution in 100 ml beaker. To it, 10 ml of Na₂EDTA (0.1M) solution was added and then solution was continuously stirred. 10 ml of Na₂S₂O₃ (0.05M) solution was then added into a beaker slowly. The resultant solution was stirred for few minutes. The indium doped tin oxide (ITO) glass was used as the substrate. The ultrasonically cleaned glass substrates were immersed vertically into acidic bath. In order to determine the optimum condition for the deposition process, the films were deposited at different bath temperatures (40-60 °C) and pH values (pH 0.5 to pH 1.5). During deposition period the beaker was kept undisturbed. The substrates were removed from the baths after 2 hours. The deposited films were tested for adhesion by subjecting it to a steady stream of distilled water.

X-ray diffraction analysis was carried out, using a Philips PM 11730 diffractometer for the 2θ ranging from 20° to 60° with CuKα (λ = 1.5418 Å) radiation. Topography was measured by using an atomic force microscopy (Quesant Instrument Corporation, Q-Scope 250) operating in contact mode, with Si₃N₄ cantilever. Photoelectrochemical (PEC) experiments were performed using a [Fe(CN)₆]³⁻/[Fe(CN)₆]⁴⁻ redox system, by performing linear sweep voltammetry between -500 to -1000 mV at a sweep rate of 10 mV/s. The Ag/AgCl electrode and platinum wire were used as reference electrode and counter electrode, respectively. The sequence of constant illumination and dark period were performed on the PEC cell to study the effect on photoactivity behavior. A halogen lamp (300 W, 120 V) was used for illuminating the electrode. Optical absorption study was carried out using the Perkin Elmer UV/Vis Lambda 20 Spectrophotometer. The film-coated indium doped tin oxide glass was placed across the sample radiation pathway while the uncoated ITO glass was put across the reference path. The absorption data were manipulated for the determination of the band gap energy, E_g.
Fig. 1. X-ray diffraction patterns of Cu$_4$SnS$_4$ films deposited at different chemical bath temperatures. [(a) 40 °C (b) 50 °C (c) 60 °C] (▼Cu$_4$SnS$_4$ ◇indium tin oxide substrate).

Fig. 2 shows the three-dimensional representation of 20 µm X 20 µm area of the Cu$_4$SnS$_4$ films deposited at different chemical bath temperatures. Fewer grains are visible for the films deposited at 40 °C and 60 °C (Fig. 2a, 2c). The grains were distributed randomly over the surface of substrate. The sizes of the grains exhibited random orientation as it varies from one to another. This revealed that the thicker surface coverage of the Cu$_4$SnS$_4$ onto the substrate. However, the grains were found to be fine and distributed evenly over the substrate surface for the film deposited at 50 °C (Fig. 2b). The AFM image of this film indicated complete sample coverage over the substrate and smooth Cu$_4$SnS$_4$ texture.

Fig. 3 shows the absorption spectra of Cu$_4$SnS$_4$ films at various bath temperatures. The Cu$_4$SnS$_4$ thin films show a gradually increasing absorbance throughout the visible region, which makes it possible for this material to be used in a photoelectrochemical cell. From the absorption spectra, it was observed that there is no significant change of spectra, indicating thinner samples obtained. The thickness of thin films deposited at 40°, 50° and 60 °C were 602, 145 and 368 nm, respectively. However, higher absorption characteristic could be obtained for the film deposited at 50 °C as compared with other temperatures. Thus, this bath temperature is more preferable in the preparation of Cu$_4$SnS$_4$ films of better quality on ITO substrate.

Fig. 2. Atomic force microscopy images of Cu$_4$SnS$_4$ films deposited at different chemical bath temperatures [(a) 40 °C (b) 50 °C (c) 60 °C].

Fig. 4 shows the different between photocurrent (I$_p$) and dark current (I$_d$) for the films deposited at different chemical bath temperatures. The film deposited at 50 °C showed the highest photoresponse activity if compared with other deposition temperatures. This could be due to sufficient semiconducting material deposited onto the surface of substrate. The photocurrent occurs on the negative potential indicates the films are p-type and they can be deployed as a photocathode in a photoelectrochemical cell for reduction reactions.

Fig. 4. Comparison of photosensitivity of the films deposited at different chemical bath temperatures (▲40 °C; ◊ 50 °C; ■ 60 °C).

Fig. 5 shows the XRD patterns of Cu$_4$SnS$_4$ thin films deposited at 50 °C at different pH ranging from pH 0.5 to pH 1.5. The XRD patterns are found to be polycrystalline with orthorhombic structure. There are two peaks can be observed at diffraction angles of 30.3° and 50.6° on the XRD pattern obtained on the films prepared at pH 0.5. These two peaks are assigned to interplanar distances of 2.95 and 1.81 Å which corresponding to (221) and (711) planes respectively. When the pH value was increased from pH 0.5 to pH 1 and 1.5, the number of peaks related with Cu$_4$SnS$_4$ formation increased. There are five additional Cu$_4$SnS$_4$ peaks could be detected at 2θ = 28.6°, 35.1°, 38.7°, 42.7°.
and 47.1° which attributed to the (102), (420), (222), (331) and (040) planes. On the other hand, the XRD pattern displayed diffraction peak at 2θ =21.3° which corresponds to (211) plane of indium tin oxide substrate for thin film deposited at pH 1.

Fig. 5. X-ray diffraction patterns of Cu₄SnS₄ thin films deposited at 50 °C in different pH solutions (a) pH 0.5 (b) pH 1.0 (c) pH 1.5 (▼ Cu₄SnS₄ ◇ indium tin oxide substrate)

Fig. 6 shows the three-dimensional representation of a 20 µm X 20 µm area of the Cu₄SnS₄ thin films deposited at different pH of the chemical bath. The irregular surface of film and discontinuous distribution of grains was detected for the film grown at pH 0.5 (Fig. 6a) and pH 1 (Fig. 6b) respectively. However, the film shows uniform, dense and well-covered entire substrate surface (Fig. 6c) when the solution pH is increased from 1 to 1.5.

Fig. 7 shows the absorption spectra of Cu₄SnS₄ films at different pH values. The films show a gradually increasing absorbance throughout the visible region. The films grown at pH 1.5 are thicker and have higher absorption characteristics. This response also associated with the fact that more polycrystalline Cu₄SnS₄ materials were formed at this pH value. Thus, pH 1.5 is more preferable in the preparation of Cu₄SnS₄ films of better quality on ITO substrate.

Fig. 8 indicates the different between photocurrent (Iₚ) and darkcurrent (Iₜ) for the films deposited at different pH of the chemical bath. The photoresponse for the films deposited at pH 0.5 was the lowest because of least Cu₄SnS₄ crystallite formation. It is observed that the samples prepared at higher pH (pH 1.5) values have the highest photoresponse activity.

Fig. 8. Comparison of photosensitivity of the films deposited at 50 °C in different pH solutions.

Band gap energy and transition type can be derived from mathematical treatment of data obtained from optical absorbance versus wavelength with Stern relationship of near-edge absorption:

\[A = \frac{k(\frac{hν - E_g}{n})^{\frac{1}{2}}}{hν} \]

where \(ν \) is the frequency, \(h \) is the Planck's constant, \(k \) equals a constant while \(n \) carries the value of either 1 or 4. The value of \(n \) is 1 and 4 for the direct transition and indirect transition, respectively. The band gap (Eₙ) could be obtained from a straight line plot of (Ahν)^2 as a function of hν. Extrapolation of the line to the base line, where the value of (Ahν)^2 is zero, will give Eₙ. The (Ahν)^2 versus hν plot is a straight line (Fig. 9) indicating that the energy band gap of Cu₄SnS₄ is direct and intercept on the hν axis yield a band gap of 1.4 eV for the film prepared in 50 °C at pH 1.5.
CONCLUSIONS

Cu₄SnS₄ thin films have been chemically deposited on indium tin oxide substrates from aqueous solution containing CuSO₄, SnCl₂, Na₂S₂O₃, and Na₂EDTA. The thin films produced were found to be polycrystalline with orthorhombic structure. The X-ray diffraction pattern showed that the most intense peak at 2θ = 30.2° which belongs to (221) plane of Cu₄SnS₄. The films deposited at 50 °C were found to have the best photoresponse activity and smaller crystal size. At pH 1.5, the film showed well-covered entire substrate surface and the highest absorption values in AFM and optical study, respectively. Deposition at 50 °C with pH 1.5 is the optimum condition to prepare good quality thin films under the current condition. The bandgap value was found to be 1.4 eV with direct transition. The photoresponse in the cathodic region indicate the p-type semiconductor.

ACKNOWLEDGEMENTS

The authors would like to thank the Department of Chemistry, Universiti Putra Malaysia for the provision of laboratory facilities and MOSTI for the National Science Fellowship (NSF).

REFERENCES