Endophytic selenobacteria and arbuscular mycorrhizal fungus for Selenium biofortification and *Gaeumannomyces graminis* biocontrol

Paola Durán1*, Sharon Viscardi3, Jacquelinne J. Acuña1, Pablo Cornejo1, Rosario Azcón2, María de la Luz Mora1

1Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco-Chile.
2Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Granada-Spain.
3Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile *Corresponding author: paola.duran@ufrontera.cl

Abstract

Selenium (Se) is an important antioxidant considered among the fertilization programs in developed countries. In Chile, chemical fertilization based in Se is inefficient due the physicochemical characteristics of Andisol that sustain the 60% of crop production. Andisol also are highly conductive to take-all disease caused by *Gaeumannomyces graminis* var tritici (Ggt). Here, we evaluated the effect of *Bacillus* sp.E5 and *Acinetobacter* sp.E6.2 and *Claroideoglomus claroideum* as potential inocula for Se biofortification and Ggt bicontrol in wheat. Plants inoculated with *Acinetobacter* sp.E6.2 showed major root growth and major Se content in shoots and grains. The antioxidant role of Se regarding DPPH activity was shown in Se-supplemented plants with small Se nanoparticles founded inside the roots. Mycorrhizal plants showed major SOD activity in shoots but no affected the Se uptake. Respect to pathogen biocontrol, plants inoculated with both bacteria showed an efficient control against Ggt independent to mycorrhization. Thus, our inocula could make important contributions to produce enriched Se flours for human nutrition and biocontrol against Ggt.

Keywords: Selenium, biofortification, Green Fluorescent Protein, NanoSe, take-all disease

1. Introduction

In recent years, several studies relating to the role of selenium (Se) in human health have been conducted because Se plays an essential antioxidant function in glutathione peroxides (GSH-Px), production of selenoproteins for antioxidant defence systems, inhibition of DNA damage and cancer prevention and progression (Xu *et al.*, 2003). However, the level of Se intake worldwide is inadequate for the expression of important selenoproteins (Rayman, 2007). In developed
In countries such as Finland and Australia, agronomic biofortification by the addition of inorganic Se to soil is commonly applied (Lyons et al., 2003). In Chile, this technology is inappropriate because in our Andisol, inorganic Se forms sodium selenite and is bound to soil constituents such as clays and oxy-hydroxides of aluminium (Al), iron (Fe) or manganese (Mn), remaining unavailable to plants (Mora et al., 2008), whereas sodium selenate can be leached during wet fall conditions (Govasmark and Salbu, 2011). Thus, while Se content in soils of the South of Chile is low, ranging between 21 and 180 µg kg\(^{-1}\) (Cartes et al., 2005) there are not viable strategies for Se fertilization. In addition, the mineralogical compositions of the Andisol provide limited conditions for root development; therefore, a decrease in plant performance is commonly observed (Mora et al., 2008).

Studies previously conducted by our research group showed that microorganisms, such as selenobacteria, can metabolize and transform inorganic Se into nanospheres of elemental Se (NanoSe) (Acuña et al., 2009) and other organic Se forms. These Se forms can enhance the Se content in wheat plants through biofortification strategies based on efficient inoculation of rhizospheric bacteria with arbuscular mycorrhizal fungi (AMF) (Durán et al., 2013). In a recent study, we showed that the plant growth promoting (PGP) endophytic bacteria Bacillus sp.E5 and Acinetobacter sp.E6.2 have more important ecological advantages than rhizospheric bacteria in terms of Se tolerance and Gaeumannomyces graminis biocontrol (Durán et al., 2014) due to endophytic microorganisms can produce antifungal metabolites. In recent studies, Bacillus sp.E5 and Acinetobacter sp.E6.2 were able to produce Se organic forms, such as seleno-methyl-selenocysteine (SeMeSeCys) and seleno-methionine (SeMet) (Durán et al., 2015), which can play a role in cancer prevention (Rayman, 2007).

On the other hand, Gaeumannomyces graminis is a soil borne pathogen that affect wheat plant in Chile, causing losses around 50% of wheat production due to environmental and agronomic conditions as monoculture (Duran et al., 2017, 2018). However, further research involving agricultural plant species and using these endophytic bacteria and AMF are needed to elucidate their role in Se biofortification and Gaeumannomyces graminis biocontrol.

Here, we hypothesized that endophytic bacteria could serve for Se augmentation inside the plant because bacteria can incorporate NanoSe into the cells and could have a synergic effect with mycorrhiza improving the antioxidant system and plant growth. Thus, the main objective of this study was to evaluate the efficiency of these microbial association in terms of Se increase, the antioxidant activity in plants and the capacity of biocontrol of Gaeumannomyces graminis. In addition, we studied the ability of NanoSe to enter plant cell and the endophytic capacity of bacteria inocula. Our results may be useful for the consideration of novel selenium biofertilizer with capacity of biocontrol of the main pathogen that affect the most consumed cereal in Chile and can to serve of basis to incorporate this important antioxidant inside the fertilization strategies.

2. Materials and Methods

2.1. Inocula preparation

2.1.1. Bacteria inococula preparation

Two previously isolated endophytic selenobacteria strains identified as Acinetobacter sp.E6.2 and Bacillus sp.E5 (Durán et al., 2014) were used for inocula preparation. The isolates are deposited at the Chilean Culture Collection of Type Strains.
Microbial consortia to Gaeumannomyces graminis biocontrol

Journal of Soil Science and Plant Nutrition, 2018, 18 (4), 1021-1035

(CCCT/UFRO), which is registered at the World Federation of Culture Collection under the number WDCM1111 and is hosted at the Scientific and Technological Bioresource Nucleus (BIOREN) from Universidad de La Frontera, Temuco, Chile with the codes: CCT 15.25 (Acinetobacter sp.E6.2) and CCT 15.23 (Bacillus sp.E5).

Strains were grown in 200 mL of Luria Bertani media (LB) supplemented with 5 mM sodium selenite (Na₂SeO₃, Merck, Inc.) according to Durán et al., (2013). After growth at 30 °C for 24h with continuous shaking (150 rpm), the bacterial cells were collected by centrifugation at 10,000 x g for 10 min and rinsed twice with sterile saline solution (0.85% NaCl). The bacterial cell suspension was used as a selenobacteria inoculum for greenhouse experiments.

2.1.2. Mycorrhizal propagation

Claroideoglomus claroideum (N.C. Schenck & G.S. Sm.) C. Walker & A. Schüßler, isolated from the rhizosphere of wheat plants growing in volcanic soils from Southern Chile was used for plant mycorrhization. For the Claroideoglomus claroideum (AMF) inoculum preparation, Sorghum bicolor plants cv Soradan (INIA) were inoculated with spores and mycelia of mycorrhiza and maintained for three months in a sand:vermiculite:peat (1:1:1; v:v:v) substrate for its propagation. Then, colonized roots and substrate were used as inocula (Durán et al., 2013).

2.1.3. Pathogen inocula preparation

A highly pathogenic isolate of Gaeumannomyces graminis was used as inoculum inoculation. For this, oat kernel inoculum was prepared. Colonized oat were blended, sieved to a particle size of 0.5-1.0 mm, and stored at 5°C until use (Duran et al., 2017).

2.2. Greenhouse assay 1

A completely randomized experimental design was adopted. Wheat seeds cv Fritz were surface-disinfected by dipping in 0.8% (v:v) NaClO solution for 15 min. Then, seeds were placed in a pot containing 1 kg of soil from Maquehue belonging to Freire series (Table 1). For AMF inoculated plants, pots including AMF inoculum:soil (1:1) were used. After 7 days, the bacteria inoculum was directly injected into the rhizosphere of wheat with two millilitres of 10⁸ CFU mL⁻¹ of each strain grown in selenite, for the consortia preparation the same number of cell of both bacteria were considered. The treatments were as follows: (1) control, (2) Acinetobacter sp.E6.2, (3) Acinetobacter sp.E6.2 grown in selenite, (4) Bacillus sp.E5, (5) Bacillus sp.E5 grown in selenite, (6) consortium (Acinetobacter sp. + Bacillus sp.), and (7) consortium grown in selenite.

These treatments were applied to both AMF inoculated (with Claroideoglomus claroideum) and non-AMF inoculated pots at 14 and 30 days, thus we considered a total of 14 treatments. Plants were irrigated every 10 days with Taylor and Foy nutrient solution (Taylor and Foy, 1985) and maintained for 4 months under greenhouse conditions at day/night cycle of 16/8 h, 21/15 °C and 50% relative humidity.

Mycorrhizal colonization in root plants was measured by using 10% KOH and staining with 0.05% Trypan blue in lactic acid (v/v) and was quantified according to the grid-line intersect method (Giovannetti and Mosse, 1980). In addition, colonized roots were observed by using an Olympus CX31 optical microscope.

2.3. Antioxidant activity determination

Enzymatic extracts were obtained according to Lin et al., (2009). Total protein concentration was determined by the Coomassie blue G-250 dye-binding assay, using bovine serum albumin as a standard (Bradford, 1976).
2.3.1. Superoxide dismutase activity (SOD)

The activity of SOD was assayed spectrophotometrically by measuring its ability to inhibit the photochemical reduction of nitroblue-tetrazolium (NBT) (Medha et al. 2013). A set of cuvettes was covered with a black cloth as a control. The other set was placed approximately 30 cm below a bank of two 15-W fluorescent lamps. The reaction was initiated by turning the light on for 10 min. Following light exposure, the tubes were covered (Abassi et al., 1998). One enzyme unit was defined as the amount of free extract that inhibited the reduction of nitroblue-tetrazolium by 50% at pH 7.0. The total specific enzyme activity was expressed as U mg protein⁻¹. The scavenging ratio of samples was expressed as Trolox equivalents per gram of plant samples (Wong et al., 2006). Thus, 0.1 g of vegetal material (wheat shoot) was homogenized with methanol. Then, 0.25 mL of samples were mixed with 0.75 mL of 0.25 mM DPPH ethanol. The reaction mixture (1 mL) was added to the automatic injector Synergy™ HT multimode microplate reader. The DPPH solution absorbance was measured at 517 nm.

2.4. Total Se determination

For Se determination, two phenological steps were considered. The first step was at 30 days after seedling, when plants were in the middle tillering, and the second step was at 4 months (dry grain). The Se content was measured by Atomic Absorption Spectrophotometry (AAS) with an HG 3000 Hydride generator (GBC Scientific Equipment Ltd.) using NaBH₄ solution as the reducing agent (Kumpulainen, 1983). Two Se-enriched flour samples supplied by the Department of Applied Chemistry and Microbiology of Helsinki University (Finland) were used for reference.

2.5. NanoSe penetration in plants analysed by transmission electron microscopy (TEM)

As the main Se form found in the inocula was NanoSe (Durán et al., 2015), the ability of NanoSe
to penetrate cell walls was visualized by high-magnification TEM (model JEOL/JEM 1200 EX II) using root collected from plants with and without exposure to Se (Dhanjal and Cameotra, 2010). Ultra-thin sections were cut using an ultra-microtome, and the sections were stained with alcoholic uranyl acetate (saturated solution in ethanol) for 2 min and subsequently stained in lead citrate for 2 min before examining the grids by TEM. Plants without Se supplementation were used as controls and processed similarly.

2.6. Fluorescent labelling of endophytic selenobacteria

Bacillus sp.E5 and Acinetobacter sp.E6.2 were tagged by parental conjugation (Lambersten et al., 2004) with pBK-mini-Tn7-gfp (pUC19-derived delivery vector for mini-Tn7-gfp, gentamycin resistant, chloramphenicol acetyltransferase, β-lactamase, Mob’, Koch et al., 2001) and the helper plasmid pUX-BF13 (donor of Tn7 transposase tns ABCDE R6K, ampicillin resistant, β-lactamase, Mob’, Bao et al., 1991). Bacteria were grown on Luria-Bertani (LB) medium containing gentamycin as antibiotic (10 µg mL⁻¹).

2.7. Confocal laser scanning microscopy

The ability of bacteria to colonize the roots of wheat plants was checked by confocal laser scanning microscopy (CLSM). For this purpose, wheat plants were grown in soil from Maquehue (Table 1) and 5 mL of 10⁹ CFU mL⁻¹ grown in LB were inoculated in each pot at 7 days. The inoculum was injected into the rhizosphere of wheat. The treatments were: (1) control (non inoculated), (2) Acinetobacter sp.E6.2, (3) Bacillus sp.E5, and (4) consortium (Acinetobacter sp. + Bacillus sp.). Then, roots were carefully washed and the presence of tagged bacteria was confirmed by the CLSM Olympus Fluoview 1000.

2.8. Biocontrol greenhouse assay 2

In order to evaluate the capacity of biocontrol against Gaeumannomyces graminis of microbial inoculant using in this study another assay using substrate sand:vermiculite:peat (1:1:1) to avoid the effect of soil was made. The treatments were 1) control, (2) Acinetobacter sp.E6.2, (3) Bacillus sp.E5 and consortium (Acinetobacter sp. + Bacillus sp.). These treatments were applied to both AMF inoculated (with Claroideoglomus claroideum) and non-AMF inoculated pots and with Ggt and without Ggt, thus we considered a total of 14 treatments. All treatments in triplicates. Briefly, experiment was conducted in pots filled with 80g of sterile soil (121°C 15 min, for 3 days), wheat seedlings var. Fritz were superficially disinfected and pre-germinated as previously described. Wheat plants, CV Fritz were watered each three days and nutrient Taylor and Foyd solution was applied each 15 days. Plants were grown in greenhouse conditions and collected after 45 days. Then, the percentage of root blackening against a white background, on a 0-100% scale, was recorded. Shoots carefully separated to roots and dried at 70 °C for 72 H to obtain the shoot dry weight.

2.9. Statistical analysis

Data sets were analysed by one-way analysis of variance (ANOVA), and mean comparisons were performed using Tukey’s multiple range test with the SPSS software (SPSS, Inc.). All experiments were performed in triplicate, and the values were given as the means ± SE. Differences were considered to be significant when the P value was less than or equal to 0.05.
3. Results

3.1. Plant growth

The roots of wheat plants inoculated with *Acinetobacter* sp.E6.2, particularly when Se was supplemented, showed higher growth than plants of other treatments (Figure 1). No significant differences were found in plants inoculated with *Bacillus* sp.E5 compared with the control plants in all treatments. Wheat plants were effectively colonized by the mycorrhizal inoculum (from 40 to 54%) but this colonization reduced radical growth significantly in control plants and plants inoculated with *Acinetobacter* sp.E6.2. However, no significant differences in shoot yield were found between mycorrhizal and non-mycorrhizal plants.

![Figure 1. Dry weight (g) of shoots and roots of wheat plants inoculated with endophytic bacteria (Bacillus sp.E5 or Acinetobacter sp.E6.2 and dual consortia) and the arbuscular mycorrhizal fungus (AM) Claroideoglomus claroideum, supplemented or not with Se. Tukey’s post-hoc test was used to compare treatment means. Values followed by the same letter do not differ at P≤0.05 (n= 3). Bars denote means ± S.E. c (control), cAM (control+mycorrhiza), E5 (Bacillus sp.E5), E5AM (Bacillus sp.E5+mycorrhiza), E5Se (Bacillus sp.E5+selenium), E6.2 (Acinetobacter sp.E6.2), E6.2AM (Acinetobacter sp.E6.2+mycorrhiza), E6.2Se (Acinetobacter sp.E6.2+selenium), Cons (consortia), ConsAM (consortia+mycorrhiza), ConsSe (consortia+selenium).](image)

3.2. Antioxidant activity

Higher SOD activity was found in the shoots of plants inoculated with both bacteria, mainly in mycorrhizal plants supplemented with Se respect to the rest of treatments. No significant differences between non-inoculated and inoculated plants (Figure 2a) were observed for SOD of roots. Plants inoculated with Se-supplemented bacteria, either *Acinetobacter* or *Bacillus*, showed higher DPPH activity in both shoots.
and roots than the control plants (Figure 3b). The lowest DPPH activities were observed in roots and shoots of plants inoculated with only Acinetobacter sp.E6.2, without Se (Figure 2b), this activity was improved by AM colonization for this treatment.

Figure 2. (A) Superoxide dismutase and (B) α,α-diphenyl-β-picrylhydrazyl-radical activity in shoots and roots of wheat plants inoculated with endophytic bacteria (Bacillus sp.E5 or Acinetobacter sp.E6.2 and dual consortia) and the arbuscular mycorrhizal fungus (AM) Claroideoglomus claroideum, supplemented or not with Se. Tukey’s post-hoc test was used to compare treatment means. Values followed by the same letter do not differ at P≤0.05 (n= 3). Bars denote means ± S.E. c (control), E5 (Bacillus sp.E5), E5Se (Bacillus sp.E5+selenium), E6.2 (Acinetobacter sp.E6.2), E6.2Se (Acinetobacter sp.E6.2+selenium), Cons (consortia), ConsSe (consortia+selenium).
3.3. Total selenium content

In general, mycorrhizal plants showed lower Se content in the shoots than non-mycorrhizal plants, whereas no significant differences were found in grain, except in plants inoculated with *Acinetobacter* sp., where major Se content was observed in non-mycorrhizal plants (Figure 3c). Higher Se content was observed in shoots of plants inoculated with *Acinetobacter* sp.E6.2 than in those inoculated with *Bacillus* sp.E5 in both stages, at 30 days (tillering) and 4 months (mature grain). Shoots and grains showed similar tendencies with regard to Se concentration (Figure 3a, 3b, 3c). Thus, at both tillering and mature grain, a positive and significant correlation between Se concentration in shoots of plants was found (R=0.420; *P*<0.05 and R=0.744; *P*<0.01), and we also observed a positive correlation regarding Se content between grain and waste spikes (Figure 3d, R=0.877; *P*<0.01).

3.4 NanoSe penetration into plant cells analysed by transmission electron microscopy (TEM)

Differences in NanoSe size (~20-200nm) were observed in the lyophilized powder of bacteria inocula (Figure 4a, b). We found NanoSe inside and scattered around the cells, both as free deposits and as aggregates attached to the bacterial cell mass in Se supplemented plants (Figure 5c, d), but no in plants without Se treatments (Figure 4e). Moreover, the electron diffraction patterns of single NanoSe particles confirmed the occurrence of amorphous Se in lyophilized selenobacteria (Figure 4a).
Figure 4. Transmission electron microscopy images of (A) bacteria supplemented with Se biosynthesized as elemental nanospheres, (B) root cells of wheat seedlings without Se supplementation and (C) vacuoles from root cell of Se-supplemented wheat. Micrographs were taken after 10 days of bacterial inoculation.

Figure 5. Confocal laser scanning microscopy images of endophytic colonization: (A) control bacteria without GFP tag, (B) GFP-tagged *Bacillus* sp.E5, (C) GFP-tagged *Acinetobacter* sp.E6.2, (D) roots of wheat plants without bacterial colonization, (E) roots of wheat plants colonized by GFP-tagged *Bacillus* sp.E5 and (F) roots of wheat plants colonized by GFP-tagged *Acinetobacter* sp.E6.2.
3.5 Colonization of wheat root by Green Fluorescent Protein (GFP)-tagged endophytic selenobacteria

Bacillus sp.E5 and Acinetobacter sp.E6.2 strains were successfully tagged with the mini-Tn7 system using the parental conjugation method. LB selective agar plates were used to grow typical colonies of both strains. Green fluorescence emission was observed by confocal laser scanning microscopy (Figure 5b, c), whereas in bacteria without GFP-tagged (control) was not detected fluorescence emission (Figure 5a). Bacterial detection of wheat roots by GFP-tagged Bacillus sp.E5 and Acinetobacter sp.E6.2 strains occurred as shown by the comparison with plants inoculated with bacteria without the mini-Tn7 plasmid (Figure 5e, f).

3.6 Biocontrol effect of microbial inocula against Gaeumannomyces graminis

In general, plants infection by the root pathogen Gaeumannomyces graminis reduced growth of wheat plants (Table 1). According to our results both bacteria (Bacillus sp.E5 and Acinetobacter sp.E6.2 strains) diminish the incidence of disease caused by Gaeumannomyces graminis (Table 2) observed by the blackening roots. This effect was more evident in plants inoculated with Acinetobacter sp.E6.2 than Bacillus sp.E5. Similar behaviour in plant inoculated with the consortia (Bacillus sp.E5 + Acinetobacter sp.E6.2) was found. However, no effect in mycorrhizal plants in terms of disease diminution was observed. Despite plants inoculated with mycorrhiza in general showed major biomass production.

Table 2. Biocontrol assay against Gaeumannomyces graminis var tritici

<table>
<thead>
<tr>
<th>Factor</th>
<th>RB67515</th>
<th>RB92579</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w/o-Mo</td>
<td>w-Mo</td>
</tr>
<tr>
<td>DAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>0.66</td>
<td>0.60</td>
</tr>
<tr>
<td>100</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>130</td>
<td>0.28</td>
<td>0.55</td>
</tr>
<tr>
<td>200</td>
<td>0.68</td>
<td>0.82</td>
</tr>
<tr>
<td>365</td>
<td>0.40</td>
<td>0.29</td>
</tr>
<tr>
<td>Mean N</td>
<td>0.48</td>
<td>0.53</td>
</tr>
<tr>
<td>Mean Mo</td>
<td>0.50 b</td>
<td>0.65 a</td>
</tr>
<tr>
<td>Mean</td>
<td>0.58 a</td>
<td></td>
</tr>
</tbody>
</table>

Tukey’s post-hoc test was used to compare treatment means between columns. Values followed by the same letter do not differ at $P \leq 0.05$ (n= 3). Bars denote means ± S.E.

Journal of Soil Science and Plant Nutrition, 2018, 18 (4), 1021-1035
4. Discussion

Recent studies showed that inocula based on *Acinetobacter* sp. strain E6.2 and *Bacillus* sp. strain E5 were able to metabolize the most important organic Se forms as SeMet and SeMeSeCys for cancer prevention and elevated NanoSe (Durán *et al.*, 2015). In this study, wheat plants inoculated with *Acinetobacter* sp. showed higher root growth, which can be attributed to the better colonization ability of this strain compared to root colonization by *Bacillus* sp. strain. No effect in plant yield in AMF-inoculated plants was found, even though the interactions between AMF and bacteria, particularly rhizobacteria, are commonly synergistic, mainly with Gram (+) bacteria (Artursson *et al.*, 2005). Thus, studies realized by Sundram *et al.* (2011) showed that endophytic bacteria promoted de AMF spore formation and hyphal length. However, certain bacteria can be influenced by AMF exudates and plant nutrition status (Artursson *et al.*, 2006). In semiarid environments, studies showed that the colonization ability and community composition of endophytic bacteria and endophytic fungi can influence the colonization and community composition of AMF (Taniguchi *et al.*, 2012).

Mycorrhizal plants supplemented with Se showed higher SOD production in shoots compared with non-mycorrhizal plants, as previously suggested (Ruiz-Lozano *et al.*, 1996). This result could be attributed to the enhancement production of superoxide radicals by mycorrhizal symbiosis (Arines *et al.*, 1994). No effect of Se application was found. In contrast to inorganic Se where up to 2 μM decreased SOD activity in Al-stressed plants (Cartes *et al.*, 2010). However, major DPPH radical scavenging activity was observed in plants inoculated with both bacteria and treated with Se. Probably as the result of the increase in the antioxidant defence system due to the Se supply (Xu *et al.*, 2003). Similarly, studies reported major DPPH scavenging activity by NanoSe (Barnaby *et al.*, 2011), the main Se form in our inocula (data not shown). These amorphous NanoSe structures, characteristic of elemental selenium obtained by biologic reduction (Torres *et al.*, 2012) were observed in the roots of Se treated wheat plants, mainly in vacuoles (Figure 4), as previously reported (Parsons *et al.*, 2010). However, only the NanoSe particles not bigger than 20 nm in diameter entered into plants, supporting our previous hypothesis that most of the NanoSe particles did not pass through the cell wall pores due to their large size (Durán *et al.*, 2015). Thus, the size of NanoSe is an important for Se biofortification using bacteria. A further support of this hypothesis is the presence of magnetic carbon-coated nanoparticles in the vascular tissues of wheat plants (Cifuentes *et al.*, 2010).

Se content was evaluated at tillering and mature grain. At both stages there were positive correlations of Se content in the shoots and the grain. Shoots of Se-supplemented plants showed between 5 and 15 mg Se kg⁻¹, whereas shoot of plants inoculated with rhizobacteria at similar doses showed 4 mg Se kg⁻¹ (Acuña *et al.*, 2013). Thus, endophytic bacteria strains seem to be more efficient than rhizobacteria for Se biofortification, probably because acted as effective biotechnological carriers for Se augmentation inside the plant because bacteria can incorporate NanoSe into the cells (Acuña *et al.*, 2013). Similar to the behaviour of endophytic bacteria used for the bioaugmentation of trace elements (Sessitsch *et al.*, 2013).

The construction of *gfp*-tagged endophytic selenobacteria demonstrated that *Bacillus* sp.E5 and *Acinetobacter* sp.E6.2 strains can form endophytic populations in roots. Other authors reported that the mini-Tn7 system forms stable genomic islands in a variety of bacteria (Koch *et al.*, 2001), including *Bacillus* sp., which is reported to have the attTn7 site (Parks and Peters, 2007). Thus, GFP-labelling seems to be a useful tool.
for studying microbe–plant interactions (Ryan et al., 2008). However, is important to consider that GFP genes produce pleiotropic changes attributable to stress protein synthesis (Rodriguez et al., 2006).

Respect to the capacity of biocontrol against Gaeumannomyces graminis, no effect in mycorrhizal plants in terms of root infection decline was found, in contrast to previous studies realized by Behn (2008) and Castellanos-Morales et al. (2012), where mycorrhizal plant was able to inhibit the pathogen infection. However, mycorrhizal plants resulted in an increase in dry matter biomass in Gaeumannomyces graminis infected wheat similar to reported by Behn (2008). In relation to bacteria inocula we found that both endophytic bacteria (Acinetobacter sp. E6.2 and Bacillus sp. E5) were able to diminish efficiently the pathogen incidence, mainly Acinetobacter sp. E6.2. Similar to the in vitro assay realized by Duran et al., 2014 with the same strains corroborating the hypothesis that the inocula promote the plant growth and protect against take-all in greenhouse.

5. Conclusions

Our results showed the feasibility of the use of endophytic bacteria and AMF inocula in consortium as a biofortification strategy due to i) effective root colonization, ii) improvement of antioxidant activity, iii) increased Se content in the grain of wheat plants and iv) Gaeumannomyces graminis biocontrol as a potential tool to generate Se-biofortified flour for human consumption and diminish the incidence of the main pathogen that affect the most important cereal of southern Chile.

Acknowledgements

This study was supported by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), FONDECYT Postdoctoral Project N° 3130542 and FONDECYT Iniciation Project No. 11150540 from Chilean Government. The authors acknowledge the important contributions of Susana Garcia and the technical support of the Scientific and Technological Bioresource Nucleus (BIOREN) from La Frontera University.

References

