Short Communication

Comparative analysis of the reproductive strategy of lion’s paw scallop
Nodipecten subnodosus in Baja California Sur, Mexico

Marco A. Angel-Dapa¹, Marcial Arellano-Martínez¹, Bertha P. Ceballos-Vázquez¹
Hector Acosta-Salmón² & Pedro E. Saucedo²

¹Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas
Av. Instituto Politécnico Nacional s/n, Col. Playa Palo de Santa Rita, Apdo. Postal 592
La Paz, B.C.S. 23096, México

²Centro de Investigaciones Biológicas del Noroeste (CIBNOR). Mar Bermejo 195
Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23000, México

Corresponding author: Pedro E. Saucedo (psaucedo04@cibnor.mx)

ABSTRACT. The reproductive strategy of lion’s paw scallop *Nodipecten subnodosus* was evaluated in a culturing system in Bahía Tortugas, Baja California Sur, Mexico during an annual cycle, comparing its response with data previously reported at other localities. High frequencies of ripe gonads throughout the year indicate that reproduction was continuous, with two main ripening/spawning events: July-September and December-March. A continuous breeding is also reported for the species in Bahía Magdalena, Bahía Juncalito, and Bahía de Los Ángeles. These eutrophic areas are Biological Active Centers where gametogenesis appears to be regulated by the energy taken from recently ingested food following an opportunistic strategy. However, the digestive gland index decreased and the muscle indices increased during one of the breeding peaks, suggesting that some stored reserves are also used to sustain gametogenesis (conservative strategy) partially. High incidences of atretic oocytes are likely associated with atypical daily variations in water temperature from May through September (12 to 33°C), or with stressful conditions in the culturing system in summer. Despite this, the culturing system set in Bahía Tortugas appears beneficial for a continuous reproduction of *N. subnodosus*.

Keywords: culturing system, gametogenesis, lion’s paw scallop, lipid index, morpho-physiological indices, reproductive strategy.

In temperate bivalves, seasonal changes in environmental factors regulate overall patterns of energy acquisition and allocation, and with this, important aspects of gametogenesis, such as gamete maturation, growth, release, and reabsorption (Barber & Blake, 2006; Benninger & Le Pennec, 2006). In hermaphrodite
scallops, reproductive events may operate differently than in protandric bivalves, and differences may occur between species or populations of the same species separated along wide or narrow latitude ranges (Arellano-Martínez et al., 2004, 2011). Thus, the expression of reproductive events in a particular geographic area may be analyzed in relation to the type of strategy (opportunistic or conservative) that a species uses to initiate and sustain gametogenesis from exogenous or endogenous energy reserves.

The lion’s paw scallop *Nodipecten subnodosus* (Sowerby I, 1835) is an hermaphrodite bivalve with high potential for commercial cultivation in northwestern Mexico, but natural populations are overexploited and exposed to wide variations in temperature and availability of food (Morales-Zárate et al., 2011; Ponce-Díaz et al., 2011). Thus, different reproductive patterns (seasonal or continuous) have been reported for wild (Arellano-Martínez et al., 2004; Yee-Duarte, 2009) and cultivated stocks (Racotta et al., 2003; Villalero-Fuerte et al., 2004; Arellano-Martínez et al., 2011). This study analyzed the reproductive strategy of *N. subnodosus* in a commercial farm located in a place where reproduction of the species has yet not been studied: Bahía Tortugas, Baja California Sur, Mexico. The results were compared with previously reported data for wild and cultured scallops at other temperate and subtropical localities.

Hatchery-reared *N. subnodosus* juveniles were transferred to the field and seeded in a culturing system in Bahía Tortugas, Baja California Sur, Mexico. The results were compared with previously reported data for wild and cultured scallops at other temperate and subtropical localities.

Figure 1. Geographic location of the study area (A: Bahía Tortugas) and other sites of the Baja California Peninsula where reproduction of wild and cultivated lion’s paw scallop *Nodipecten subnodosus* has been studied (B: Laguna Ojo de Liebre, C: Bahía de Los Angeles, D: Bahía Juncalito, and E: Bahía Magdalena).

Hatchery-reared *N. subnodosus* juveniles were transferred to the field and seeded in a culturing system in Bahía Tortugas, in the western Pacific coast of the Baja California Peninsula (27°41’30”N, 114°53’45”W) (Fig. 1). Juvenile scallops were grown under suspension conditions at 5 m depth in Japanese lanterns held from 60 m long lines. Overall maintenance to remove fouling and to adjust stocking density to ~50% occupation area of the lantern was conducted every two months, as recommended by Velasco et al. (2009).

Thirty scallops (7–8 months old; 74 ± 0.69 mm SD shell height) were collected monthly during the annual cycle April 2009-March 2010. Parallel to samplings, water temperature was measured daily with a digital HOBO thermograph placed at 5 m depth, and concentration of chlorophyll-a (µg L⁻¹) was obtained for each sampling day using Modis AQUA satellite imagery from the NOAA database (http://coastwatch.pfeg.noaa.gov). Collected scallops were grown under suspension conditions at 5 m depth in Japanese lanterns held from 60 m long lines. Overall maintenance to remove fouling and to adjust stocking density to ~50% occupation area of the lantern was conducted every two months, as recommended by Velasco et al. (2009).

Thirty scallops (7–8 months old; 74 ± 0.69 mm SD shell height) were collected monthly during the annual cycle April 2009-March 2010. Parallel to samplings, water temperature was measured daily with a digital HOBO thermograph placed at 5 m depth, and concentration of chlorophyll-a (µg L⁻¹) was obtained for each sampling day using Modis AQUA satellite imagery from the NOAA database (http://coastwatch.pfeg.noaa.gov). Collected scallops were grown under suspension conditions at 5 m depth in Japanese lanterns held from 60 m long lines. Overall maintenance to remove fouling and to adjust stocking density to ~50% occupation area of the lantern was conducted every two months, as recommended by Velasco et al. (2009).

Thirty scallops (7–8 months old; 74 ± 0.69 mm SD shell height) were collected monthly during the annual cycle April 2009-March 2010. Parallel to samplings, water temperature was measured daily with a digital HOBO thermograph placed at 5 m depth, and concentration of chlorophyll-a (µg L⁻¹) was obtained for each sampling day using Modis AQUA satellite imagery from the NOAA database (http://coastwatch.pfeg.noaa.gov). Collected scallops were grown under suspension conditions at 5 m depth in Japanese lanterns held from 60 m long lines. Overall maintenance to remove fouling and to adjust stocking density to ~50% occupation area of the lantern was conducted every two months, as recommended by Velasco et al. (2009).

To measure the lipid (triglyceride) content of oocytes, replicated gonad slides were stained with Black Sudan B and processed with Image Pro Plus software to determine a lipid index (LI) (Rodríguez-Jaramillo et al., 2008):

\[
I = \left(\frac{AL}{OA} \right) \times 100
\]

where \(AL \) = area covered by lipid droplets in the oocyte (in pixels) and \(OA \) = oocyte area (µm²).

Collected scallops were measured for shell height (±0.1 mm) and weighed for fresh live biomass (±0.1 g). The weights of the gonad, digestive gland, adductor muscle, and mantle were also registered (±0.1 g) to determine a gonadsomatic index (GSI), digestive gland index (DGI), adductor muscle index (AMI), and mantle tissue index (MI) (Arellano-Martínez et al. 2004):

\[
DGI, AMI, MI = \left(\frac{TW}{SW} \right) \times 100
\]
Reproductive strategy of *Nodipecten subnodosus* 618

where TW = weight of each somatic tissue (g) and SW = live weight of scallops without shell (g).

One-way ANOVA were used to determine significant differences in oocyte diameter and tissue indices as a function of time, followed by multiple range analysis of media with the Tukey test when needed. The relationship between tissues indices (DGI, AMI, MI), environmental factors, and GSI was analyzed with correlation analyses (Sokal & Rohlf, 1995). Previously, data (%) were arcsin transformed. For all analyses, the significance level was preset at $P < 0.05$.

Variations in water temperature and chlorophyll-a in Bahía Tortugas followed a typical seasonal pattern (Fig. 2) and maintained an inverse relationship with each other ($r = 0.87$). Lower values occurred in spring (temperature) and summer (chlorophyll-a) and higher values in summer-autumn (temperature) and spring-summer (chlorophyll-a). There were, however, large temperature oscillations in May-June (13 to 32°C) and September (22.5 to 33°C).

The histological analysis showed that late developed and ripe gonads occurred all year round (Fig. 2), with two spawning events in July through September and December through March. Regressing gonads occurred from April through November, with a peak in July (41.5%) that coincided with atypical increases in water temperature.

Significant changes in the oocyte diameter ($P < 0.05$) occurred over time, with two periods of size increase in July ($54.5 \pm 3.08 \mu m$ SE) and January ($50.4 \pm 2.64 \mu m$). These changes were significantly correlated with changes in the LI ($r = 0.82$), which peaked again in July (63.3 ± 3.41) and January ($56.1 \pm 4.6 \mu m$) (Fig. 2).

All condition indices varied significantly over time ($P < 0.05$), with peak values occurring in July (GSI), September–November (DGI), March (AMI), and July (MI). Changes in the GSI (4.4% to 20%) were not significantly correlated with changes in temperature ($P > 0.05$). Mean DGI (9.6% to 10.7%) and MI (49.9 to 28.7%) values were not significantly correlated with the GSI ($P > 0.05$), but it was significant ($P < 0.05$) between the AMI (17.3 to 21.8%) and the GSI.

The high proportion of ripe gonads (with large oocytes) in most sampled months indicate that gametogenesis of *N. subnodosus* in Bahía Tortugas was continuous under the conditions prevailing in the culturing system. A continuous reproduction is also reported for the species at other subtropical and temperate localities of the Baja California Peninsula (Fig. 1), including scallops cultivated in Bahía Magdalena (Racotta *et al.*, 2003) and Bahía Juncalito (Villalejo-Fuerte *et al.*, 2004), as well as wild scallops from Bahía de Los Angeles (Yee-Duarte, 2009). The three sites, together with Bahía Tortugas, are eutrophic areas reported as Biologically Active Centers or BAC, which offer high primary productivity all year round and optimum conditions for filter feeders to maintain a prolonged breeding (Lluch-Belda *et al.*, 2000; Morales-Zárate *et al.*, 2011). Under these conditions, gameto-
genesis appears to be sustained by the energy taken from recently ingested food, following an opportunistic strategy. However, the DGI significant decreased and the AMI significantly increased during one of the two breeding peaks (January through March), suggesting that the species also uses some of its stored reserves to partially sustain gametogenesis (conservative strategy). Based on this evidence, we believe that *N. subnodosus* can adopt either an opportunistic or a conservative strategy to maximize reproductive output depending on prevailing environmental conditions in Bahía Tortugas.

In Laguna Ojo de Liebre, a temperate site close to the study area (Fig. 1), reproduction of wild *N. subnodosus* is seasonal; here, a short ripening and spawning period from September through November is followed by a large quiescent period from December onwards (Arellano-Martínez et al., 2004, 2011). This seasonal pattern of reproduction in Laguna Ojo de Liebre is likely the result of low primary productivity limiting nutrient availability to filter feeders during most of the year (Lluch-Belda et al., 2000). The scenario points towards the usage of a conservative strategy to manage energy reserves during narrow breeding peaks, which contrasts with the dynamic pattern of Bahía Magdalena (Racotta et al., 2003), Bahía de Los Angeles (Yee-Duarte, 2009), and Bahía Tortugas (this study) as BAC areas (Morales-Zárate et al., 2011).

The marked thermic oscillations registered in Bahía Tortugas during May-September 2009 appear to be anomalous and not representative of the area for a normal year not influenced by ENSO events. In this period, a large percentage of ripe gonads experienced a spawning interruption and a resorption process (atresia). Atresia has been well described in scallops (Benninger & Le Pennec, 2006), and usually indicates nutrient recycling as a result of stress originated from unsuitable conditions at the wild (Arellano-Martínez et al., 2004, 2011) or within the culturing system because of overcrowding, presence of predators, lack of maintenance, etc. (Velasco et al., 2009). In our study, it is likely that stress would originate only when atypical thermal oscillations occurred, since our overall evidence suggests that the culturing system set in Bahía Tortugas offers suitable conditions for a continuous reproduction of *N. subnodosus*. Based on this evidence, this scallop species may become a viable candidate for profitable cultivation in Bahía Tortugas and other BAC areas of the eastern or western coasts of the Baja California Peninsula. To achieve this, and optimize a protocol for successful cultivation of the species in these areas, we recommend analyzing certain aspects of its physiological response at the wild and under cultivation conditions, such as immune, antioxidant, and genetic. The plasticity of the species to use conservative or opportunistic strategy also needs to be validated as for the quality of gametes produced and overall performance of larvae and spat reared in hatcheries.

ACKNOWLEDGMENTS

We thank the following staff at CIBNOR: Horacio Bervera, Juan J. Ramírez, Enrique Calvillo, and Mario Cota for assistance during field collections; Carmen Rodríguez-Jaramillo and Eulalia Meza for support in processing of tissue samples; and Ira Fogel for editorial improvements. This research was funded through SIP 20101187 of Instituto Politécnico Nacional, and
CONACyT 2009-2010 and 81249 grants. MAAD is a fellow student of PIFI (IPN) and CONACyT, and the results presented here are part of his MSc Thesis.

REFERENCES

Received: 27 July 2014; Accepted: 24 March 2015