Short communication

New record of *Pherecardia striata* (Polychaeta: Amphinomidae) from Easter Island, Chile

Juan I. Cañete

1Departamento de Ciencias y Recursos Naturales, Facultad de Ciencias Universidad de Magallanes, Punta Arenas, Chile
Corresponding author: Juan I. Cañete (ivan.canete@umag.cl)

ABSTRACT. The polychaete amphinomid *Pherecardia striata* (Kingberg, 1857) is newly reported from the littoral off Easter Island (27º10'S, 109º20'W). The specimens are smallest than those collected in other tropical islands of the Pacific Ocean. *P. striata* resulted to be the least abundant of the three species of Amphinomidae collected from Easter Island: *Eurythoe complanata* (Pallas, 1776) and *Linopherus* sp. (Kohn & Lloyd, 1973b).

Keywords: *Pherecardia striata*, Amphinomidae, Polychaeta, benthos, biodiversity, Easter Island, Chile.

The main antecedents of Easter Island benthic polychaetes (27º10'S, 109º20'W) are contained in 11 articles: Chamberlin (1919), Augener (1922), Fauvel (1936), Hartmann-Schröder (1962), Kohn & Lloyd (1973a, 1973b), Castilla & Rozbaczylo (1987), Di Salvo et al. (1988), Rozbaczylo & Castilla (1988), Cañete (1997) and Boyko (2003). These works have described three species of Amphinomidae to be present at Easter Island littoral: *Eurythoe complanata* (Pallas, 1776), *Linopherus* sp. (Kohn & Lloyd, 1973b), and *Pherecardia striata*, which was only reported by Fauvel (1936).

P. striata is relatively common in the tropical zone of the Pacific Ocean (Kohn & Lloyd, 1973a, 1973b; Cañete, 1989; Rajasekaran & Fernando, 2012), and it is adapted to spatial macro-scale dispersion (Glasby, 2005) because of the qualities of its teleplanic larvae (rostraria). The aim of this study is to register for second time the presence of this species in the littoral of Easter Island, to increase the knowledge on polychaete benthic biodiversity at this remote island.

The analysis of approximately 60 samples over three summer periods (1983-1985) (Di Salvo et al., 1988) allowed register the presence of three specimens of *P. striata*, each collected in equal sample numbers.

Pherecardia striata (Kinberg, 1857)

(Figs. 1a-1d)

Synonymy

Hermodice striata (Kinberg, 1857)

Hermodice striata (Fauvel, 1936)

The corresponding editor is Diego Giberto.
Figure 1. a) Dorsal view of the front end of the polychaete *Pherecardia striata*; b) prostomium, dorsal view; c) parapodium 4, anterior view; d) notochaeta and capillary neurochaeta, parapodium 4.

elongated tip and serrated margin, and 2) hook-shaped uncini, straight, and margin with 9 to 11 rows of spines (Fig 1d). Thin neuropodial bristles, thin and capillary-like, with serrated edges and a smooth, thin tip (Fig. 1d).

Comment: This is the second registration and collection of specimens in the littoral of Easter Island. It is considered that Amphinomidae of the *Hermodice* genus are very similar to the representatives of the *Pherecardia* genus. In this way, Yáñez-Rivera & Salazar-Vallejo (2011) provide evidence that confirm the differences between *Hermodice* (Kingberg, 1857) and *Pherecardia* Horst, 1886, being both genera currently valid. *P. striata* has gills that start in the chaetiger segment 1, whereas in the other two species of amphinomids from Easter Island, the gills start in the chaetiger segment 2. The three species have distinct gill morphology.

Distribution: Madagascar, Indonesia, Mozambique, Philippines, India, South Africa, Easter Island, New Caledonia, Hawaii Islands, Cook Islands, and Marshall Islands. Apparently it possesses circumtropical distribution in the Pacific and Indian Ocean.

Bathymetric distribution in Easter Island: intertidal to shallow subtidal.

P. striata was originally described in the location of Eimeo, Society Islands. Later, it was described for the entire tropical zone of the Pacific and Indian Ocean (Knox, 1957; Day, 1967; Reish, 1968; Gibbs, 1972; Rullier, 1972; Kohn & Lloyd, 1973a, 1973b). The wide geographic distribution of this species should be due to the existence of the rostraria larva, which is typical for Amphinomidae polychaetes and has adaptations for a prolonged pelagic larval life (Glasby, 2005). This pattern of geographic distribution shown by *P. striata* is typical of species with circumtropical and subtropical distribution.

This is the second time *P. striata* is collected in the littoral of Easter Island. This species resulted to be the
least abundant of the three species of Amphipodidae known in Easter Island, being the other two Eurythoe complanata (Pallas, 1776) and Linopherus sp. (Kohn & Lloyd, 1973b), which were also collected in this study (Cañete, 1989). *P. striata* has medium size (20 mm length), as compared to the other two Amphipodidae species (120 and 8 mm length respectively). The small size of these polychaetes, their coloring, and the fact they live in subtidal areas, might have motivated their unnoticed passage under the eyes of other researchers who visited the island in the twentieth century.

The small size of the specimens collected in Easter Island may be due to their adaptation to the microspaces left by dominant corals on the littoral, such as *Porites lobata* and *Pocillopora* spp. In other parts of the Pacific and Indian Ocean, *P. striata* can reach a size of up to 200 mm (Rajasekaran & Fernando, 2012). The competition with *Eurythoe complanata*, an abundant amphipomid of Easter Island, may limit food availability (actinarian) and size. By bringing together past and current information, it can be seen that *P. striata* is present on the littoral of the entire island, similar to that described for the Polynoidae family (Cañete, 1997). *P. striata* was previously collected in the Cave Bay and in Hanga Roa by Fauvel (1936).

The richness in polychaete species belonging to the Amphipodidae family at Easter Island is small in comparison to other tropical islands of the Pacific Ocean of relatively similar size (Reish, 1968; Gibbs, 1972; Rullier, 1972; Kohn & Lloyd, 1973a; Rozbaczylo & Carrasco, 1995). Such situation could be due to the geographic isolation of the island, its small size, relative geological youth, and lack of awareness about the biodiversity in the subtidal zone (Di Salvo et al., 1988; Boyko, 2003).

Finally, it is important to emphasize that it is urgent to know the current status of the benthic biodiversity of Easter Island, especially now that this island is part of the large marine park that would protect the existing biodiversity.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the ongoing support provided by Prof. Nicolás Rozbaczylo (Pontificia Universidad Católica de Chile, Santiago, Chile) to identify the species of Easter Island that were part of the undergraduate thesis. This work is dedicated to the memory of the esteemed Chilean polychaetologist Dr. Franklin Carrasco Vásquez (Universidad de Concepción, Concepción, Chile), who passed away the year 2015.

REFERENCES

Received: 30 March 2016; Accepted: 15 September 2016

