Abstract

The object of this paper is to establish some generating relations by using operational formulae for a class of polynomials $T_{kn}^{(a+s-1)}(x)$ defined by Mittal. We have also derived finite summation formulae for (1.6) by employing operational techniques. In the end several special cases are discussed.

Key Words: Operational formulae; generating relations; finite sum formulae.

2000 Mathematics Subject Classification: 33E12; 33E99; 44A45.
1. Introduction

Chak [1] defined a class of polynomials as:

\[G_{n,k}^{(\alpha)}(x) = x^{-\alpha-kn+n}e^x(x^kD)^n[x^\alpha e^{-x}] \]

where \(D = \frac{d}{dx} \), \(k \) is constant and \(n = 0, 1, 2, \ldots \).

Chatterjea [2] studied a class of polynomials for generalized Laguerre polynomial as:

\[T_{\alpha}^{(r)}(x,p) = \frac{1}{n!}x^{-\alpha-n-1}\exp(px^r)(x^2D)^n[x^\alpha \exp(-px^r)]. \]

Gould and Hopper [3] introduced generalized Hermite polynomials as:

\[H^{(r)}_n(x,a,p) = (-1)^nx^{-a}\exp(px^r)D^n[x^\alpha \exp(-px^r)]. \]

Singh [10] obtained generalized Truesdell polynomials by using Rodrigues formula, which is defined as:

\[T_{\alpha}^{(s)}(x,r,p) = x^{-\alpha}\exp(px^r)(xD)^n[x^\alpha \exp(-px^r)]. \]

In 1971, Mittal [5] proved the Rodrigues formula for a class of polynomials \(T_{kn}^{(\alpha)}(x) \) as:

\[T_{kn}^{(\alpha)}(x) = \frac{1}{n!}x^{-\alpha}\exp\{p_k(x)\}D^n[x^\alpha \exp\{-p_k(x)\}] \]

where \(p_k(x) \) is a polynomial in \(x \) of degree \(k \).

Mittal [6] also proved the following relation for (1.5)

\[T_{kn}^{(\alpha+s-1)}(x) = \frac{1}{n!}x^{-\alpha-n}\exp\{p_k(x)\}\theta^n[x^\alpha \exp\{-p_k(x)\}] \]

and an operator \(\theta \equiv x(s + xD) \), where \(s \) is constant.

The following well-known facts are prepared for studying (1.6).

Generalised Laguerre polynomials (Srivastava and Manocha[12]) defined as:

\[L^{(\alpha)}_n(x) = \frac{x^{-\alpha-n-1} e^x}{n!} (x^2D)^n[x^\alpha+1 e^{-x}]. \]
Hermite polynomials (Rainville [9]) defined as:

\[H_n(x) = (-1)^n \exp(x^2) D^n[\exp(-x^2)]. \]

(1.8)

Konhauser polynomials of first kind (Srivastava [11]) defined as:

\[Y^\alpha_n(x; k) = \frac{x^{-\alpha-1} \exp(x)}{k^n n!} (x^{k+1}D)^n[x^\alpha+1 e^{-x}]. \]

(1.9)

Konhauser polynomials of second kind (Srivastava [11]) defined as:

\[Z^\alpha_n(x; k) = \frac{\Gamma(kn + \alpha + 1)}{n!} \sum_{j=0}^{n} (-1)^j \binom{n}{j} \frac{x^{kj}}{\Gamma(kj + \alpha + 1)}. \]

(1.10)

where \(k \) is a positive integer.

Srivastava and Manocha [12] verified following result by using induction method,

\[(x^2D)^n\{f(x)\} = x^{n+1}D^n\{x^{n-1}f(x)\}. \]

(1.11)

2. Definitions and Notations

McBride [4] defined generating function as:

Let \(G(x, t) \) be a function that can be expanded in powers of \(t \) such that

\[G(x, t) = \sum_{n=0}^{\infty} c_n f_n(x) t^n, \]

where \(c_n \) is a function of \(n \) that may contain the parameters of the set \(\{f_n(x)\} \), but is independent of \(x \) and \(t \). Then \(G(x, t) \) is called a generating function of the set \(\{f_n(x)\} \).

Remark: A set of functions may have more than one generating function.

In our investigation we used the following properties of the differential operators;

\[\theta \equiv x(s + xD) \]
\[\theta_1 \equiv (1 + xD), \] where \(D \equiv \frac{d}{dx} \) (Mittal [7], Patil and Thakare [8]) which are useful to establish linear generating relations and finite sum formulae.
(2.1) \[\theta^n = x^n(s + xD)(s + 1 + xD)(s + 2 + xD) \ldots (s + (n - 1) + xD) \]

(2.2) \[\theta^n(x^\alpha) = (\alpha + s)_{n} x^{\alpha+n} \]

(2.3) \[\theta^n(xuv) = x \sum_{m=0}^{\infty} \binom{n}{m} \theta^{n-m}(v)\theta^{m}_{1}(u) \]

(2.4) \[e^{t\theta}(x^\alpha) = x^{\alpha}(1 - xt)^{-(\alpha+s)} \]

(2.5) \[e^{t\theta}(xuv) = xe^{t\theta}(v)e^{t\theta}_{1}(u) \]

(2.6) \[e^{t\theta}(x^{\alpha}f(x)) = x^{\alpha}(1 - xt)^{-(\alpha+s)} f\left[x(1 - xt)^{-1} \right] \]

(2.7) \[e^{t\theta}(x^{\alpha-n}f(x)) = x^{\alpha}(1 + t)^{-1+(\alpha+s)} f\left[x(1 + t) \right] \]

(2.8) \[(1 - at)^{-\alpha/a} = (1 - at)^{-\beta/a} \sum_{m=0}^{\infty} \binom{\alpha - \beta}{a} \frac{(at)^m}{m!} \]

3. Generating Relations

We obtained some generating relations of (1.6) as

(3.1) \[\sum_{n=0}^{\infty} T_{kn}^{(\alpha+s-1)}(x)t^n = (1 - t)^{-(\alpha+s)} \exp[p_k(x) - p_k\{x(1 - t)^{-1}\}] \]
\[
\sum_{n=0}^{\infty} T_{kn}^{(\alpha-n+s-1)}(x)t^n = (1 + t)^{-1+(\alpha+s)} \exp[p_k(x) - p_k\{x(1 + t)\}]
\]

(3.2)

\[
\sum_{m=0}^{\infty} \binom{m + n}{n} T_{k(n+m)}^{(\alpha+s-1)}(x) t^m
= (1 - t)^{-(\alpha+s+n)} \exp[p_k(x) - p_k\{x(1 - t)^{-1}\}] T_{kn}^{(\alpha+s-1)}\{x(1 - t)^{-1}\}
\]

(3.3)

\[
\sum_{m=0}^{\infty} \binom{m + n}{n} T_{k(n+m)}^{(\alpha-m+s-1)}(x) t^m
= (1 + t)^{\alpha+s-1} \exp[p_k(x) - p_k\{x(1 + t)\}] T_{kn}^{(\alpha-m+s-1)}\{x(1 + t)\}
\]

(3.4)

Proof of (3.1). From (1.6), we consider

\[
\sum_{n=0}^{\infty} x^n T_{kn}^{(\alpha+s-1)}(x)t^n = x^{-\alpha} \exp\{p_k(x)\} e^{\theta \alpha} \exp\{-p_k(x)\}
\]

and using (2.6), above equation reduces to,

\[
\sum_{n=0}^{\infty} x^n T_{kn}^{(\alpha-s+1)}(x)t^n = x^{-\alpha} \exp\{p_k(x)\} x^\alpha (1-xt)^{-(\alpha+s)} \exp[-p_k\{x(1-xt)^{-1}\}]
\]

\[
= (1 - xt)^{-(\alpha+s)} \exp[p_k(x) - p_k\{x(1 - xt)^{-1}\}]
\]

replacing \(t\) by \(t/x\), which gives (3.1).
Proof of (3.2). From (1.6) we consider,

\[T_{kn}^{(\alpha-n+s-1)}(x) = \frac{1}{n!} x^{-(\alpha-n)-n} \exp\{p_k(x)\} \theta^n \left[x^{\alpha-n} \exp\{-p_k(x)\} \right] \]

or

\[\sum_{n=0}^{\infty} T_{kn}^{(\alpha-n+s-1)}(x)t^n = (x)^{-\alpha} \exp\{p_k(x)\} e^{t\theta} \left[x^{\alpha-n} \exp\{-p_k(x)\} \right] \]

by using (2.7), we get

\[\sum_{n=0}^{\infty} T_{kn}^{(\alpha-n+s-1)}(x)t^n = x^{-\alpha} \exp\{p_k(x)\} x^{\alpha}(1+t)^{-1+(\alpha+s)} \exp\{-p_k\{x(1+t)\}\} \]

\[= (1 + t)^{-1+(\alpha+s)} \exp[p_k(x) - p_k\{x(1 + t)\}]. \]

Proof of (3.3). Again from (1.6) we consider,

\[\theta^n [x^\alpha \exp\{-p_k(x)\}] = n! x^{\alpha+n} \exp\{-p_k(x)\} T_{kn}^{(\alpha+s-1)}(x) \]

or

\[e^{t\theta} (\theta^n [x^\alpha \exp\{-p_k(x)\}]) = n! e^{t\theta} \left[x^{\alpha+n} \exp\{-p_k(x)\} \right] T_{kn}^{(\alpha+s-1)}(x) \]

using (2.6) we get,

\[\sum_{m=0}^{\infty} \frac{t^m \theta^{m+n}}{m!} [x^\alpha \exp\{-p_k(x)\}] \]

\[= n! x^{\alpha+n}(1 - xt)^{-(\alpha+s+n)} \exp[-p_k\{x(1 - xt)^{-1}\}] T_{kn}^{(\alpha+s-1)}(x(1 - xt)^{-1}) \]

therefore, we get
\[
\sum_{m=0}^{\infty} \frac{1}{m! n!} (m+n)! x^{\alpha+m+n} \exp\{-p_k(x)\} T_{k(m+n)}^{(\alpha+s-1)}(x)t^m
\]
\[
= x^{\alpha+n} (1-xt)^{-(\alpha+s+n)} \exp[-p_k\{x(1-xt)^{-1}\}] T_{kn}^{(\alpha+s-1)}\{x(1-xt)^{-1}\}
\]
hence above equation reduces to,
\[
\sum_{m=0}^{\infty} x^m \binom{m+n}{n} T_{k(m+n)}^{(\alpha+s-1)}(x)t^m
\]
\[
= (1-xt)^{-(\alpha+s+n)} \exp[p_k(x) - p_k\{x(1-xt)^{-1}\}] T_{kn}^{(\alpha+s-1)}\{x(1-xt)^{-1}\}
\]
replacing \(t \) by \(t/x \), which gives (3.3).

Proof of (3.4). Again from (1.6) we consider,
\[
\theta^n[x^\alpha \exp\{-p_k(x)\}] = n! \ x^{\alpha+n} \exp\{-p_k(x)\} T_{kn}^{(\alpha+s-1)}(x)
\]
replacing \(\alpha \) by \(\alpha - m \), we get
\[
\theta^n[x^{\alpha-m} \exp\{-p_k(x)\}] = n! \ x^{\alpha-n} \exp\{-p_k(x)\} T_{kn}^{(\alpha+s-1)}(x)
\]
or
\[
e^{t\theta}(\theta^n[x^{\alpha-m} E_\alpha\{-p_k(x)\}]) = n! e^{t\theta}[x^{(\alpha+n)-m} \exp\{-p_k(x)\} T_{kn}^{(\alpha+m-s-1)}(x)]
\]
using (2.7) we get,
\[
\sum_{m=0}^{\infty} \frac{t^m}{m!} \theta^{m+n} [x^{\alpha-m} \exp\{-p_k(x)\}]
\]
\[
= n! \ x^{\alpha+n} (1+t)^{\alpha+s-1} \exp[-p_k\{x(1+t)\}] T_{kn}^{(\alpha-m+s-1)}\{x(1+t)\}
\]
therefore, we get
\[
\sum_{m=0}^{\infty} \frac{1}{m! n!} (m+n)! x^{\alpha-m+m+n} \exp\{-p_k(x)\} T^{(\alpha-m+s-1)}_{k(m+n)}(x) t^n \\
= x^{\alpha+n}(1+t)^{\alpha+s-1} \exp[-p_k(x(1+t))] T^{(\alpha-m+s-1)}_{k n}(x(1+t))
\]
which reduces to (3.4).

4. Finite Summation Formulae

We obtained finite summation formula for (1.6) as
\[
(4.1) \quad T^{(\alpha+s-1)}_{k n}(x) = \sum_{m=0}^{n} (m!)^{-1} (\alpha - \beta)_m T^{(\beta+s-1)}_{k(n-m)}(x)
\]
\[
(4.2) \quad T^{(\alpha+s-1)}_{k n}(x) = \sum_{m=0}^{n} \frac{1}{m!} (\alpha)_m T^{(s-1)}_{k(n-m)}(x)
\]

Proof of (4.1). We can write (1.6) as,
\[
\sum_{n=0}^{\infty} x^n T^{(\alpha+s-1)}_{k n}(x) t^n = x^{-\alpha} \exp\{p_k(x)\} e^{t\theta} [x^\alpha \exp\{-p_k(x)\}]
\]
by using (2.6), we write
\[
\sum_{n=0}^{\infty} x^n T^{(\alpha+s-1)}_{k n}(x) t^n \\
= x^{-\alpha} \exp\{p_k(x)\} x^\alpha (1-xt)^{-(\alpha+s)} \exp[-p_k(x(1-xt)^{-1})]
\]
\[
= (1-xt)^{-(\alpha+s)} \exp\{p_k(x) - p_k(x(1-xt)^{-1})\}
\]
applying (2.8), which yields
\[
\sum_{n=0}^{\infty} x^n T^{(\alpha+s-1)}_{k n}(x) t^n
\]
\[
(1 - xt)^{-(\beta + s)} \sum_{m=0}^{\infty} (\alpha - \beta)_m \frac{(xt)^m}{m!} \exp[p_k(x) - p_k\{x(1 - xt)^{-1}\}]
\]

\[
= \sum_{m=0}^{\infty} (\alpha - \beta)_m \frac{x^m t^m}{m!} \exp[p_k(x)](1 - xt)^{-(\beta + s)} \exp[-p_k\{x(1 - xt)^{-1}\}]
\]

using (3.1), above equation reduces to,

\[
\sum_{n=0}^{\infty} x^n T_n^{(\alpha + s - 1)}(x) t^n = \sum_{m=0}^{\infty} (\alpha - \beta)_m \frac{x^m t^{n+m}}{m! n!} \exp[p_k(x)] x^{-\beta} e^{t\theta} [x^\beta \exp(-p_k(x))]
\]

\[
= \sum_{m,n=0}^{\infty} (\alpha - \beta)_m \frac{x^m t^{n+m}}{m! n!} \exp[p_k(x)] x^{-\beta} \theta^n [x^\beta \exp(-p_k(x))]
\]

\[
= \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{1}{m!} (\alpha - \beta)_m \frac{x^{-\beta + m}}{(n - m)!} \exp[p_k(x)] \theta^{n-m} [x^\beta \exp{-p_k(x)}] t^n
\]

equating the coefficients of \(t^n\), we get

\[
x^n T_n^{(\alpha + s - 1)}(x) = \sum_{m=0}^{n} \frac{1}{m!} (\alpha - \beta)_m \frac{x^{-\beta + m}}{(n - m)!} \exp[p_k(x)] \theta^{n-m} [x^\beta \exp{-p_k(x)}]
\]

Therefore, we obtain

\[
T_n^{(\alpha + s - 1)}(x) = \sum_{m=0}^{n} \frac{1}{m!} (\alpha - \beta)_m \frac{x^{-\beta - (n - m)}}{(n - m)!} \exp[p_k(x)] \theta^{n-m} [x^\beta \exp{-p_k(x)}]
\]

and applying (1.6) then above equation immediately leads to (4.1).

Proof of (4.2). We can write (1.6) as,

\[
T_n^{(\alpha + s - 1)}(x) = \frac{1}{n!} x^{-\alpha - n} \exp[p_k(x)] \theta^n [x x^{\alpha - 1} \exp{-p_k(x)}]
\]
using (2.3) we get,

and by using (2.1) which yields,

\[
T^{(\alpha+s-1)}_{kn}(x) = \frac{1}{n!} x^{-\alpha-n} \exp\{p_k(x)\} x \sum_{m=0}^{n} \frac{n!}{m! (n-m)!} \\
\times x^{n-m}[(s+xD)(s+1+xD)(s+2+xD) \ldots (s+(n-m-1)+xD)] \exp\{-p_k(x)\} \\
\times x^{m}[(1+xD)(2+xD)(3+xD) \ldots (m+xD)] x^{\alpha-1}
\]

\[
T^{(\alpha+s-1)}_{kn}(x) = \exp\{p_k(x)\} \sum_{m=0}^{n} \frac{1}{m! (n-m)!} \prod_{i=0}^{n-m-1} (s+i+xD) \exp\{-p_k(x)\} (\alpha)_m
\]

(4.3)

Putting \(\alpha = 0\) and replacing \(n\) by \(n-m\) in (1.6) which reduces to

\[
T^{(s-1)}_{k(n-m)}(x) = \frac{1}{(n-m)!} x^{-(n-m)} \exp\{p_k(x)\} \theta^{n-m}[\exp\{-p_k(x)\}]
\]

thus, we have

\[
\frac{1}{(n-m)!} \theta^{n-m}[\exp\{-p_k(x)\}] = \frac{x^{n-m}}{\exp\{p_k(x)\}} T^{(s-1)}_{k(n-m)}(x)
\]

using (2.1), we get

\[
\frac{1}{(n-m)!} \prod_{i=0}^{n-m-1} (s+i+xD)[\exp\{-p_k(x)\}] = \frac{1}{\exp\{p_k(x)\}} T^{(s-1)}_{k(n-m)}(x).
\]

(4.4)

use of (4.4) and (4.3), gives complete proof of (4.2).
5. Concluding Remarks

Some special cases of $T_{kn}^{(\alpha+s-1)}(x)$ polynomials are given below:

If we replace α by $\alpha + 1$, $p_k(x) = p_1(x) = x$ and $s = 0$ in (1.6), then this equation reduces to

$$T_n^{(\alpha)}(x) = L_n^{(\alpha)}(x) = Z_n^{(\alpha)}(x;1) = Y_n^{(\alpha)}(x;1). \quad (5.1)$$

Again replacing α by $\alpha + 1$, $p_k(x) = px^r$ and $s = 0$ in (1.6), which gives

$$T_r^{(\alpha)}(x) = T_r^{(\alpha)}(x,p). \quad (5.2)$$

Substituting $\alpha = 1 - n$, $p_k(x) = x^2$, $s = 0$ in (1.6) and using (1.11), which yields

$$T_{2n}^{(1-n)}(x) = \frac{(-x)^n}{n!} H_n(x). \quad (5.3)$$

Acknowledgements

We express our sincere thanks to the referees for their kind comments for the improvement of this manuscript.

References

A. K. Shukla
Department of Mathematics
S. V. National Institute of Technology
Surat-395007
India
e-mail : ajayshukla2@rediffmail.com

and

J. C. Prajapati
Department of Mathematics
S. V. National Institute of Technology
Surat-395007
India
e-mail : jyotindra18@rediffmail.com