An extension of Sheffer polynomials

A. K. SHUKLA
S. V. NATIONAL INSTITUTE OF TECHNOLOGY, INDIA

S. J. RAPELI
S. V. NATIONAL INSTITUTE OF TECHNOLOGY, INDIA

Received : February 2011. Accepted : September 2011

Abstract

Sheffer [Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), pp.590-622] studied polynomial sets zero type and many authors investigated various properties and its applications. In the sequel to the study of Sheffer Polynomials, an attempt is made to generalize the Sheffer polynomials by using partial differential operator.

Keywords : Appell sets, Differential operator, Sheffer polynomials, generalized Sheffer polynomials.

AMS Subject Classification (2010): 33C65, 33F99, 44A45,46G25.
1. Introduction

A polynomial set \(\{P_n\}_{n \geq 0} \) is said to be of Sheffer A-type zero [5] if and only if it has a generating function of the form

\[
A(t) \exp(xG(t)) = \sum_{n=0}^{\infty} P_n(x)t^n,
\]

where \(A(t) \) and \(G(t) \) are two formal power series

\[
A(t) = \sum_{k=0}^{\infty} a_k t^k, \quad a_0 \neq 0, \quad G(t) = \sum_{k=0}^{\infty} g_k t^{k+1}, \quad g_0 \neq 0.
\]

This has the property: \(J(D)P_0(x) = 0 \) and \(JP_n(x) = P_{n-1}(x), \quad n \geq 1; \)
where \(J(D) \) is defined by

\[
J = J(D) = \sum_{k=0}^{\infty} a_k D^{k+1}, \quad a_0 \neq 0 \quad \text{and} \quad D = \frac{d}{dx}.
\]

Bahman Alidad [2] studied polynomials in two variables of Sheffer A-type zero and also proved some related theorems. Sheffer [8] and Steffensen [9] generalized Appell sets by considering a linear differential operator of infinite order with constant coefficients

\[
L(D)P_n(x) = P_{n-1}(x), \quad \text{where} \quad L(D) = \sum_{k=0}^{\infty} c_k D^{k+1}, \quad c_0 \neq 0.
\]

Osegove [6] has also generalized Appell sets and studied polynomial sets
which has the property \(D^rP_n(x) = P_{n-r}(x), \quad (n = r, r+1, ...), \)
where \(r \) is a fixed positive number.

Al Salam and Verma [1] generalized Sheffer- Steffensen polynomials and defined as

\[
J(D)P_n(x) = P_{n-r}(x), \quad n = r, r+1, ... \quad \text{where} \quad J(D) = \sum_{k=0}^{\infty} a_k D^{k+r}, \quad a_0 \neq 0.
\]
An extension of Sheffer polynomials

and \(a_k(k \geq 0) \) is independent of \(x \).

In sequel to the study, we consider a class of polynomials that contain both the Sheffer-Steffensen sets and the Osegove sets of polynomials in two variables.

Let \(\{ P_n(x, y) \} \) be a simple set polynomials in two variables \(x \) and \(y \), i.e. a sequence of polynomials \(P_0(x, y), P_1(x, y), P_2(x, y), \ldots \) for which the degree of \(P_n(x, y) \)is exactly \(n \).

A polynomial set in two variables is said to be Appell set if \(P_n(x, y) = P_{n-1}(x, y) \), for all \(n \geq 1 \). A well known characteristic property of Appell set is the existence of a (formal) power series \(A(t) = \sum_{n=0}^{\infty} a_n t^n, \quad a_0 \neq 0 \) such that

\[
\sum_{n=0}^{\infty} P_n(x, y)t^n = A(t) \exp(xt) \exp(yt)
\]

(1.1)

In generalized Appell sets, consider a linear differential operator of infinite order with constant coefficients

\[
L(D) = \sum_{k=0}^{\infty} C_k D^{k+1}, \quad C_0 \neq 0,
\]

(1.2)

as a generalization of the differential operator \(D = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \).

The polynomial set which satisfy the following property

\[
L(D)P_n(x, y) = P_{n-1}(x, y),
\]

(1.3)

Bahman Alidad [2] proved that polynomial sets have the property as Equation (1.3) if and only if polynomial sets have the generating function in following form

\[
A(t) \exp(xG(t)) \exp(yH(t)) = \sum_{n=0}^{\infty} P_n(x, y)t^n
\]

(1.4)

where

\[
G(t) = \sum_{n=0}^{\infty} g_n t^{n+1}, \quad g_0 \neq 0,
\]
\[H(t) = \sum_{n=0}^{\infty} h_n t^{n+1}, \quad h_0 \neq 0, \]
\[A(t) = \sum_{n=0}^{\infty} a_n t^n, \quad a_0 \neq 0. \]

The polynomial sets in two variables have the property as given below
\[D^r P_n(x,y) = P_{n-r}(x,y) \quad (n = r, r+1, \ldots), \tag{1.5} \]
where \(r \) is a (fixed) positive integer and \(D = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \).

2. The generalized Sheffer-Steffensen polynomials

Let \(r \) be a fixed positive integer and we consider the differential operator (formal) of infinite order
\[J(D) = \sum_{k=0}^{\infty} a_k D^{k+r}, \quad a_0 \neq 0, \quad D = \frac{\partial}{\partial x} + \frac{\partial}{\partial y}, \tag{1.6} \]
where \(a_k(k \geq 0) \) is independent of \(x \). We shall say that the polynomial set \(\{ P_n(x,y) \} \) is in \(S^{(r)} \) if there is an operator \(J(D) \) of the form Equation (1.6) such that
\[J(D) P_n(x,y) = P_{n-r}(x,y) \quad (n = r, r+1, r+2, \ldots) \tag{1.7} \]
Obviously \(S^{(r)} \) contains the Osegove class \(A^{(r)} \) of polynomial sets which satisfy Equation (1.5). We clearly see that \(S^{(1)} \) is the class of Sheffer A-type zero polynomials. It is also clear that \(S^{(r)} \) may be partitioned into equivalence classes \(\{ S_j^{(r)} \} \) where \(S_j^{(r)} \) is the class of all polynomial sets with the property that
\[J(D) P_n(x,y) = P_{n-r}(x,y), \]
for a fixed operator \(J \).

If \(\{ p_n(x,y) \} \in S_j^{(r)} \), \(\{ q_n(x,y) \} \in S_j^{(r)} \) then \(\{ \alpha p_n(x,y) + \beta q_n(x,y) \} \in S_j^{(r)} \),
where \(\alpha, \beta \) are constants or are periodic in \(n \) of period \(r \).

Theorem 2.1: Let \(\{ P_n(x,y) \} \) be a polynomial set in two variables. In order to that \(\{ P_n(x,y) \} \) be in \(S^{(r)} \), it is necessary and sufficient that there exist (formal) power series
\[G(t) = \sum_{i=1}^{\infty} g_i t^i, \quad g_1 \neq 0, \tag{1.8} \]
(1.9) \[H(t) = \sum_{i=1}^{\infty} h_i t^i, \quad h_1 \neq 0, \]

(1.10) \[A_s(t) = \sum_{i=0}^{\infty} \alpha_i^{(s)} t^i, \quad \text{(not all } \alpha_0^{(s)} \text{ are zeros)} \]
such that

(1.11) \[\sum_{i=1}^{r} A_i(t) \exp((xG(z_t(t))) \exp((yH(z_t(t))) = \sum_{n=0}^{\infty} P_n(x,y)t^n \]

Proof: If \(F(t) = \sum_{k=0}^{\infty} \alpha_k t^k, \) \(\alpha_0 \neq 0, \) is a formal power series then we can find another formal power series \(f(t) = \sum_{k=0}^{\infty} \beta_k t^k, \beta_0 \neq 0 \) such that

(1.12) \[F(t) = (f(t))^k, \quad k = 1, 2, \ldots \]

Now let the polynomial sets \(\{P_n(x,y)\} \in S^{(r)} \) and suppose that the differential operator corresponding to \(\{P_n(x,y)\} \) is

\[J(D) = \sum_{k=0}^{\infty} a_k D^{k+r}, \quad a_0 \neq 0, \quad D = \frac{\partial}{\partial x} + \frac{\partial}{\partial y}. \]

We write \(J(t) = t^r F(t) \) and using Equation (1.12)

\[J(t) = \{tf(t)\}^r = \{L(t)\}^r, \]

therefore, that \(L(D) \) is a differential operator of the form Equation (1.2).

Let

\[F(x, y, t) = \sum_{n=0}^{\infty} P_n(x,y)t^n \]

Now

\[J(D)F(x, y, t) = \sum_{n=0}^{\infty} J(D)P_n(x,y)t^n \]

\[= \sum_{n=r}^{\infty} P_{n-r}(x,y)t^n \]

\[= \sum_{n=0}^{\infty} P_n(x,y)t^{n+r} \]
\[= t^r \sum_{n=0}^{\infty} P_n(x, y) t^n \]

\[J(D)F(x, y, t) = t^r F(x, y, t) \]

\[\{ J(D) - t^r \} F(x, y, t) = 0 \]

Consequently if \(\varepsilon_1, \varepsilon_2, ..., \varepsilon_r \) are the \(r \) roots of unity, we get that

\[\{ L(D) - \varepsilon_i t \} F(x, y, t) = 0 \quad (i = 1, 2, ..., r). \]

Hence

\[F(x, y, t) = \sum_{i=1}^{r} A_i(t) \exp(xG(\varepsilon_i t)) \exp(yH(\varepsilon_i t)), \quad (1.13) \]

where \(L(H(t)) = t \).

Conversely if \(F(x, y, t) \) has the form as Equation (1.13), then it follows that

\[J(D)F(x, y, t) = t^r F(x, y, t) \]

\[J(D) \sum_{n=0}^{\infty} P_n(x, y) t^n = t^r \sum_{n=0}^{\infty} P_n(x, y) t^n \]

\[\sum_{n=0}^{\infty} J(D)P_n(x, y) t^n = \sum_{n=0}^{\infty} P_n(x, y) t^{n+r} \]

\[\sum_{n=r}^{\infty} J(D)P_n(x, y) t^n = \sum_{n=r}^{\infty} P_{n-r}(x, y) t^n \]

So that

\[J(D)P_n(x, y) = P_{n-r}(x, y). \]

This completes the proof of Theorem 2.1.

Theorem 2.2: Let two polynomial sequences \(P_n(x, y) \) and \(Q_n(x, y) \) are in \(S^{(r)} \) and there is an arbitrary sequence of numbers \(\{a_n\} \), \(a_0 \neq 0 \), if and only if

\[Q_n(x, y) = \sum_{k=0}^{n} a_{n-k} P_k(x, y) \quad (1.14) \]
An extension of Sheffer polynomials

Proof: Consider \(\{P_n(x,y)\}, \{Q_n(x,y)\} \in S^{(r)} \).

Therefore \(P_n(x,y) \) and \(Q_n(x,y) \) belong to the same operator \(J(D) \) as in form of Equation (1.6) such that

\[
J(D)P_n(x,y) = P_{n-r}(x,y) \quad \text{and} \quad J(D)Q_n(x,y) = Q_{n-r}(x,y),
\]

where \(n = r, r + 1, r + 2, \ldots \).

Since \(P_n(x,y) \) and \(Q_n(x,y) \) are simple set of polynomials \([5]\) in two variables,

\[
Q_n(x,y) = \sum_{k=0}^{n} a_{n,k} P_k(x,y)
\]

Thus

\[
\sum_{k=0}^{n-r} a_{n-r,k} P_k(x,y) = Q_{n-r}(x,y) = JQ_n(x,y)
\]

\[
= \sum_{k=r}^{n} a_{n,k} J P_k(x,y)
\]

\[
= \sum_{k=r}^{n} a_{n,k} P_{k-r}(x,y)
\]

\[
= \sum_{k=0}^{n-r} a_{n,k+r} P_k(x,y)
\]

Hence \(a_{n-r,k} = a_{n,k+r} \) or \(a_{n,k+r} = a_{n-k-r,0} \), yields Equation (1.14).

Conversely: Assume Equation (1.14) to hold. There exists an operator \(J \) to which \(P_n(x,y) \) belongs. It follows from Equation (1.14) that \(Q_n(x,y) \) also belongs to same operator \(J \). This proves Theorem 2.2.

Theorem 2.3: Let \(P_n(x,y) \) be of Sheffer A-type zero, \(P_n(x,y) \) belong to the operator \(J(D) \) and have the generating function in equation (1.11) of Theorem 2.1. There exist sequences \(a_k^{(s)}, \mu_k \) and \(\eta_k \), independent of \(x,y \) and \(n \), such that for all \(n \geq 1 \),

\[
nP_n(x,y) = \sum_{i=1}^{r} S_{i,n}(x,y) \psi(\varepsilon_i t),
\]

where \(S_{i,n}(x,y) = a_k^{(s)} + x\varepsilon_i^n \mu_{n-1} + y\varepsilon_i^n \eta_{n-1} \) and \(\psi(\varepsilon_i t) = A_i(t) \exp(xG(\varepsilon_i t)) \exp(yH(\varepsilon_i t)) \) and \(\mu_k = (k+1)g_k \) in terms of \(g_k \) of Equation (1.8) and \(\eta_k = (k+1)h_k \), in terms of \(h_k \) of Equation (1.9).
\[\sum_{n=0}^{\infty} P_n(x, y) t^n = \sum_{i=1}^{r} A_i(t) \exp \left(x G(\varepsilon_i t) \right) \exp \left(y H(\varepsilon_i t) \right) \]

and writing this in the following form

\[t \frac{\partial}{\partial t} \left(\sum_{n=0}^{\infty} P_n(x, y) t^n \right) = t \frac{\partial}{\partial t} \left(\sum_{i=1}^{r} A_i(t) \exp \left(x G(\varepsilon_i t) \right) \exp \left(y H(\varepsilon_i t) \right) \right) \]

or

\[\sum_{n=0}^{\infty} n P_n (x, y) t^n = t \left[\sum_{i=1}^{r} \left\{ \frac{A_i'(t)}{A_i(t)} + x \varepsilon_i G'(\varepsilon_i t) A_i(t) + y \varepsilon_i H'(\varepsilon_i t) A_i(t) \right\} \right. \]

On simplifying above equation, yields

\[\sum_{n=0}^{\infty} n P_n (x, y) t^n = t \left[\sum_{i=1}^{r} \left\{ \sum_{n=0}^{\infty} \mu_i \varepsilon_i t^n + \sum_{n=0}^{\infty} \eta_i \varepsilon_i t^n \right\} \right. \]

So that

\[\sum_{n=1}^{\infty} n P_n (x, y) t^n = \sum_{n=1}^{r} \sum_{i=1}^{r} S_{i,n} (x, y) \psi(\varepsilon_i t) t^n \]

Hence

\[n P_n (x, y) = \sum_{i=1}^{r} S_{i,n} (x, y) \psi(\varepsilon_i t), \]

where

\[S_{i,n} (x, y) = \alpha_{i-1}^{(i)} + \varepsilon_i^{n} \mu_{i-1} + \varepsilon_i^{n} \eta_{i-1} \]
and
\[
\psi(\varepsilon; t) = A_i(t) \exp(xG(\varepsilon; t)) \exp(yH(\varepsilon; t)).
\]
This gives the statement.

Theorem 2.4: A necessary and sufficient condition that \(P_n(x, y) \) be of Sheffer A-type zero, there exists sequence \(g_k \) and \(h_k \), independent of \(x, y \) and \(n \), such that
\[
\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right) P_n(x, y) = \sum_{i=1}^{r} (\varepsilon^n_i g_{n-1} + \varepsilon^n_i h_{n-1}) \psi(\varepsilon; t)
\]

Proof:
\[
\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right) \sum_{n=0}^{\infty} P_n(x, y) t^n = \sum_{i=1}^{r} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right) \sum_{n=1}^{\infty} A_i(t) \exp(xG(\varepsilon; t)) \exp(yH(\varepsilon; t))
\]
\[
= \sum_{i=1}^{r} \sum_{n=1}^{\infty} (\varepsilon^n_i g_{n-1} + \varepsilon^n_i h_{n-1}) \psi(\varepsilon; t) t^n
\]
Thus
\[
\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right) P_n(x, y) = \sum_{i=1}^{r} (\varepsilon^n_i g_{n-1} + \varepsilon^n_i h_{n-1}) \psi(\varepsilon; t),
\]
where
\[
\psi(\varepsilon; t) = A_i(t) \exp(xG(\varepsilon; t)) \exp(yH(\varepsilon; t)).
\]
Hence, we get theorem 2.4.
References

A. K. Shukla
Department of Mathematics
S. V. National Institute of Technology
Surat-395 007
India
e-mail: ajayshukla2@rediffmail.com,
S. J. Rapeli
Department of Mathematics
S. V. National Institute of Technology
Surat-395 007
India
e-mail : shrinu0711@gmail.com