Generalized difference entire sequence spaces

 Kuldip Raj
 Sunil K. Sharma
 Amit Gupta
 Shri Mata Vaishno Devi University, India

 Received : November 2011. Accepted : May 2012

Abstract

In this paper we introduce difference entire sequence spaces and
difference analytic sequence spaces defined by a sequence of modulus
function \(F = (f_k)\) and study some topological properties and some
inclusion relations between these spaces. We also make an effort
to study some properties and inclusion relation between the spaces
\(\Gamma_F(\Delta^m, u, p, q, ||\cdot\cdot\cdot||)\) and \(\Lambda_F(\Delta^m, u, p, q, ||\cdot\cdot\cdot||)\).

Subjclass [2000] : 40A05, 40C05, 40D05.

Keywords : Paranorm space, modulus function, solid, monotone,
entire sequences, analytic sequences, paranorm space, \(n\)-normed space.
1. Introduction and Preliminaries

The notion of difference sequence spaces was introduced by Kizmaz [11], who studied the difference sequence spaces $l_\infty(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et and Çolak [5] by introducing the spaces $l_\infty(\Delta^n)$, $c(\Delta^n)$ and $c_0(\Delta^n)$. Let w be the space of all complex or real sequences $x = (x_k)$ and let m, s be non-negative integers, then for $Z = l_\infty, c, c_0$ we have sequence spaces

$$Z(\Delta^m_s) = \{x = (x_k) \in w : (\Delta^m_s x_k) \in Z\},$$

where $\Delta^m_s x_k = (\Delta^m_s x_k) = (\Delta^{m-1}_s x_k - \Delta^{m-1}_s x_{k+1})$ and $\Delta^0_s x_k = x_k$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation

$$\Delta^m_s x_k = \sum_{v=0}^{m} (-1)^v \binom{m}{v} x_{k+sv}.$$

Taking $s = 1$, we get the spaces which were studied by Et and Çolak [5]. Taking $m = s = 1$, we get the spaces which were introduced and studied by Kizmaz [11].

A complex sequence, whose k^{th} term is x_k, is denoted by (x_k). Let φ be the set of all finite sequences. A sequence $x = (x_k)$ is said to be analytic if $\sup |x_k|^\frac{1}{k} < \infty$. The vector space of all analytic sequences will be denoted by Λ. A sequence $x = (x_k)$ is called entire sequence if $\lim_{k \to \infty} |x_k|^\frac{1}{k} = 0$. The vector space of all entire sequences will be denoted by Γ.

A modulus function is a function $f : [0, \infty) \to [0, \infty)$ such that

1. $f(x) = 0$ if and only if $x = 0$,
2. $f(x + y) \leq f(x) + f(y)$ for all $x \geq 0, y \geq 0$,
3. f is increasing
4. f is continuous from right at 0.

It follows that f must be continuous everywhere on $[0, \infty)$. The modulus function may be bounded or unbounded. For example, if we take $f(x) = \frac{x^p}{x+1}$, then $f(x)$ is bounded. If $f(x) = x^p, 0 < p < 1$, then the modulus $f(x)$ is unbounded. Subsequently, modulus function has been discussed
in ([1], [2], [3], [4], [12], [13], [17], [18]) and references therein. Let $F = (f_k)$
be a sequence of modulus function.

The space consisting of all those sequences x in w such that
$f_k \left(\frac{|x_k|^{1/k}}{\rho} \right) \to 0$ as $k \to \infty$ for some arbitrary fixed $\rho > 0$ is
denoted by Γ_F and is known as a space of entire sequences defined by a
sequence of modulus function. The space Γ_F is a metric space with the
metric $d(x, y) = \sup_k f_k \left(\frac{|x_k - y_k|^{1/k}}{\rho} \right)$ for all $x = (x_k)$ and $y = (y_k)$
in Γ_F. The space consisting of all those sequences x in w such that
$\left(\sup_k \left(f_k \left(\frac{|x_k|^{1/k}}{\rho} \right) \right) \right) < \infty$ for some arbitrarily fixed $\rho > 0$ is denoted
by Λ_F and is known as a space of analytic sequences defined by a sequence
of modulus function.

A sequence space E is said to be solid or normal if $(\alpha_k x_k) \in E$ whenever
$(x_k) \in E$ and for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$ (see [10]).

Let X be a linear metric space. A function $p : X \to \mathbb{R}$ is called paranorm, if

1. $p(x) \geq 0$, for all $x \in X$,
2. $p(-x) = p(x)$, for all $x \in X$,
3. $p(x + y) \leq p(x) + p(y)$, for all $x, y \in X$,
4. if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a
 sequence of vectors with $p(x_n - x) \to 0$ as $n \to \infty$, then
 $p(\lambda_n x_n - \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which $p(x) = 0$ implies $x = 0$ is called total paranorm
and the pair (X, p) is called a total paranormed space. It is well known
that the metric of any linear metric space is given by some total paranorm
(see [19], Theorem 10.4.2, P-183).

The following inequality will be used throughout the paper. Let $p = (p_k)$
be a sequence of positive real numbers with $0 \leq p_k \leq \sup p_k = G$, $K = \max(1, 2^{G-1})$ then

\[|a_k + b_k|^{p_k} \leq K \{ |a_k|^{p_k} + |b_k|^{p_k} \} \]
for all k and $a_k, b_k \in \mathbb{C}$. Also $|a|^p_k = \max(1, |a|^G)$ for all $a \in \mathbb{C}$.

Let $F = (f_k)$ be a sequence of modulus functions and X be locally convex Hausdorff topological linear space whose topology is determined by a set of continuous seminorms q. The symbol $\Lambda(X)$ and $\Gamma(X)$ denotes the space of all analytic and entire sequences respectively defined over X. If $p = (p_k)$ be bounded sequences of strictly positive real numbers and $u = (u_k)$ be sequences of positive real numbers, then we define the following sequence spaces:

\[
\Lambda_F(\Delta^m_s, u, p, q) = \{ x \in \Lambda(X) : \sup_n \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{|(u_k \Delta^m_s x_k)|^{1/k}}{\rho} \right) \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0 \}
\]

and

\[
\Gamma_F(\Delta^m_s, u, p, q) = \{ x \in \Gamma(X) : \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|(u_k \Delta^m_s x_k)|^{1/k}}{\rho} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty, \text{ for some } \rho > 0 \}.\]

If we take $p = (p_k) = 1$, we get

\[
\Lambda_F(\Delta^m_s, u, q) = \{ x \in \Lambda(X) : \sup_n \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{|(u_k \Delta^m_s x_k)|^{1/k}}{\rho} \right) \right) \right] < \infty, \text{ for some } \rho > 0 \}
\]

and

\[
\Gamma_F(\Delta^m_s, u, q) = \{ x \in \Gamma(X) : \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|(u_k \Delta^m_s x_k)|^{1/k}}{\rho} \right) \right) \right] \to 0 \text{ as } n \to \infty, \text{ for some } \rho > 0 \}.\]
The purpose of this paper is to introduce and study a concept of difference entire sequence spaces and difference analytic sequence spaces using sequence of modulus functions. We examine some topological properties and inclusion relation between the spaces $\Lambda_F(\Delta^m_s, u, p, q)$ and $\Gamma_F(\Delta^m_s, u, p, q)$ in the second section and third section devoted to the study of some properties of n-normed spaces $\Lambda_F(\Delta^m_s, u, p, q, ||\cdot||, \cdots, ||\cdot||)$ and $\Gamma_F(\Delta^m_s, u, p, q, ||\cdot||, \cdots, ||\cdot||)$.

2. Some Topological properties of the spaces $\Lambda_F(\Delta^m_s, u, p, q)$ and $\Gamma_F(\Delta^m_s, u, p, q)$

In this section of the paper we study very interesting properties like linearity, paranorm and some attractive inclusion relations between the spaces $\Lambda_F(\Delta^m_s, u, p, q)$ and $\Gamma_F(\Delta^m_s, u, p, q)$.

Theorem 2.1 Let $F = (f_k)$ be a sequence of modulus functions and $p = (p_k)$ be bounded sequence of strictly positive real numbers, then $\Gamma_F(\Delta^m_s, u, p, q)$ and $\Lambda_F(\Delta^m_s, u, p, q)$ are linear spaces over the set of complex numbers \mathbb{C}.

Proof. Let $x = (x_k), y = (y_k) \in \Gamma_F(\Delta^m_s, u, p, q)$ and $\alpha, \beta \in \mathbb{C}$. In order to prove the result, we need to find some $\rho_3 > 0$ such that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta^m_s (\alpha x_k + \beta y_k)|}{\rho_3} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Since $x = (x_k), y = (y_k) \in \Gamma_F(\Delta^m_s, u, p, q)$, there exist some positive ρ_1 and ρ_2 such that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta^m_s x_k|}{\rho_1} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty$$

and

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta^m_s y_k|}{\rho_2} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$
Since \(F = (f_k) \) is a non-decreasing function, \(q \) is a seminorm and \(\Delta^m_{x_k} \) is linear, then

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{u_k^m(m(\alpha x_k + \beta y_k))}{\rho_3} \right)^{1 \over 2} \right) \right]^{p_k} \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{|\alpha u_k^m x_k|}{\rho_3} + \frac{|\beta u_k^m y_k|}{\rho_3} \right)^{1 \over 2} \right) \right]^{p_k}
\]

so that

\[
\sum_{k=1}^{n} \left[f_k \left(\left(\frac{|u_k^m(m(\alpha x_k + \beta y_k))|}{\rho_3} \right)^{1 \over 2} \right) \right]^{p_k} \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{|\alpha u_k^m x_k|}{\rho_3} + \frac{|\beta u_k^m y_k|}{\rho_3} \right)^{1 \over 2} \right) \right]^{p_k} \cdot \rho_3
\]

Take \(\rho_3 > 0 \) such that \(\frac{1}{\rho_3} = \min \left\{ \frac{1}{|\alpha| \rho_1}, \frac{1}{|\beta| \rho_2} \right\} \)

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{|u_k^m(m(\alpha x_k + \beta y_k))|}{\rho_3} \right)^{1 \over 2} \right) \right]^{p_k} \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{|\alpha u_k^m x_k|}{\rho_1} + \frac{|\beta u_k^m y_k|}{\rho_2} \right)^{1 \over 2} \right) \right]^{p_k}
\]

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{|\alpha u_k^m x_k|}{\rho_1} \right)^{1 \over 2} \right) \right]^{p_k} + \left[f_k \left(\left(\frac{|\beta u_k^m y_k|}{\rho_2} \right)^{1 \over 2} \right) \right]^{p_k}
\]

\[
\leq K \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{|\alpha u_k^m x_k|}{\rho_1} \right)^{1 \over 2} \right) \right]^{p_k} + K \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{|\beta u_k^m y_k|}{\rho_2} \right)^{1 \over 2} \right) \right]^{p_k}
\]

\[
\to 0 \quad \text{as} \quad n \to \infty.
\]

Hence

\[
\sum_{k=1}^{n} \left[f_k \left(\left(\frac{|\alpha u_k^m x_k + \beta u_k^m y_k|}{\rho_3} \right)^{1 \over 2} \right) \right]^{p_k} \to 0 \quad \text{as} \quad n \to \infty.
\]

This proves that \(\Gamma_F(\Delta^m_{x_k}, u, p, q) \) is a linear space. Similarly, we can prove that \(\Lambda_F(\Delta^m_{x_k}, u, p, q) \) is a linear space.
Theorem 2.2 Let $F = (f_k)$ be a sequence of modulus functions and $p = (p_k)$ be bounded sequence of strictly positive real numbers. Then $\Gamma_F(\Delta^m u, p, q)$ is a paranormed space with paranorm defined by

$$g(x) = \inf \left\{ \rho^{\frac{mp}{p}} : \sup_{k \geq 1} \left[f_k \left(q \left(\left(\frac{|u_k \Delta^m u_k x_k|}{\rho} \right)^\frac{1}{p} \right) \right) \right]^{p_k} \leq 1, \quad \rho > 0, \ m \in \mathbb{N} \right\},$$

where $H = \max(1, \sup_k p_k)$.

Proof. Clearly $g(x) \geq 0$, $g(x) = g(-x)$ and $g(\theta) = 0$, where θ is the zero sequence of X.

Let $(x_k), (y_k) \in \Gamma_F(\Delta^m u, p, q)$. Let $\rho_1, \rho_2 > 0$ be such that

$$\sup_{k \geq 1} \left[f_k \left(q \left(\left(\frac{|u_k \Delta^m u_k x_k|}{\rho_1} \right)^\frac{1}{p} \right) \right) \right]^{p_k} \leq 1$$

and

$$\sup_{k \geq 1} \left[f_k \left(q \left(\left(\frac{|u_k \Delta^m u_k y_k|}{\rho_2} \right)^\frac{1}{p} \right) \right) \right]^{p_k} \leq 1.$$

Let $\rho = \rho_1 + \rho_2$.

Then by using Minkowski’s inequality, we have

$$\sup_{k \geq 1} f_k \left(q \left(\left(\frac{|u_k \Delta^m u_k (x_k + y_k)|}{\rho} \right)^\frac{1}{p} \right) \right)^{p_k} \leq \left(\frac{\rho}{\rho_1 + \rho_2} \right) \sup_{k \geq 1} f_k \left(q \left(\left(\frac{|u_k \Delta^m u_k x_k|}{\rho_1} \right)^\frac{1}{p} \right) \right)^{p_k}$$

$$+ \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \sup_{k \geq 1} f_k \left(q \left(\left(\frac{|u_k \Delta^m u_k y_k|}{\rho_2} \right)^\frac{1}{p} \right) \right)^{p_k} \leq 1.$$

Hence

$$g(x + y) \leq \inf \left\{ (\rho_1 + \rho_2)^{\frac{mp}{p}} : \sup_{k \geq 1} f_k \left(q \left(\left(\frac{|u_k \Delta^m u_k x_k|}{\rho_1 + \rho_2} \right)^\frac{1}{p} \right) \right) \right\}^{p_k} \leq 1, \rho_1, \rho_2 > 0, \ m \in \mathbb{N} \}$$
Thus we have
\[g(x + y) \leq g(x) + g(y). \] Hence \(g \) satisfies the triangle inequality.

Theorem 2.3 Let \(F' = (f'_k) \) and \(F'' = (f''_k) \) be two sequences of modulus functions. Then

\[
\Gamma^{F'}(\Delta^m, u, p, q) \cap \Gamma^{F''}(\Delta^m, u, p, q) \subseteq \Gamma^{F'F''}(\Delta^m, u, p, q).
\]

Proof. Let \(x = (x_k) \in \Gamma^{F'}(\Delta^m, u, p, q) \cap \Gamma^{F''}(\Delta^m, u, p, q). \) Then there exist \(\rho_1 \) and \(\rho_2 \) such that

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f'_k \left(q \left(\frac{|u_k \Delta^m x_k|}{\rho_1} \right)^{\frac{1}{p}} \right) \right]^p \to 0 \text{ as } n \to \infty.
\]

and

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f''_k \left(q \left(\frac{|u_k \Delta^m x_k|}{\rho_2} \right)^{\frac{1}{p}} \right) \right]^p \to 0 \text{ as } n \to \infty.
\]
Since $\rho > 0$ such that $\frac{1}{\rho} = \min \left(\frac{1}{p_1}, \frac{1}{p_2} \right)$. Then we have $\frac{1}{n} \sum_{k=1}^{n} \left[(f_k' + f_k'') \left(q \left(\frac{|u_k \Delta_{m} x_k|}{\rho} \right) \right) \right]^{p_k}$

\[
\leq K \left[\frac{1}{n} \sum_{k=1}^{n} \left[f_k' \left(q \left(\frac{|u_k \Delta_{m} x_k|}{\rho_1} \right) \right) \right]^{p_k} \\
+ K \left[\frac{1}{n} \sum_{k=1}^{n} \left[f_k'' \left(q \left(\frac{|u_k \Delta_{m} x_k|}{\rho_2} \right) \right) \right]^{p_k} \right]
\]

$\to 0$ as $n \to \infty$

Then

\[
\frac{1}{n} \sum_{k=1}^{n} \left[(f_k' + f_k'') \left(q \left(\frac{|u_k \Delta_{m} x_k|}{\rho} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.
\]

Therefore $x = (x_k) \in \Gamma_{F^* + F''}(\Delta_{m}^{s}, u, p, q)$.

Theorem 2.4 Let $m \geq 1$. Then we have the following inclusions:
(i) $\Gamma_{F}(\Delta_{m-1}^{s}, u, p, q) \subseteq \Gamma_{F}(\Delta_{m}^{s}, u, p, q)$,
(ii) $\Lambda_{F}(\Delta_{m-1}^{s}, u, p, q) \subseteq \Lambda_{F}(\Delta_{m}^{s}, u, p, q)$.

Proof. Let $x = (x_k) \in \Gamma_{F}(\Delta_{m-1}^{s}, u, p, q)$. Then we have

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_{m-1} x_k|}{\rho} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty, \text{ for some } \rho > 0.
\]

Since $F = (f_k)$ is non-decreasing and q is a seminorm, we have

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_{m} x_k|}{\rho} \right) \right) \right]^{p_k} \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_{m} x_k - u_k \Delta_{m-1} x_k|}{\rho} \right) \right) \right]^{p_k} \\
\leq K \left\{ \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_{m} x_k|}{\rho} \right) \right) \right]^{p_k} \right\}
\]
\[+ \frac{1}{n} \sum_{k=1}^{n} \left\{ f_k \left(q \left(\frac{|u_k \Delta_{m-1} x_k|}{\rho} \right)^{\frac{r}{k}} \right) \right\}^{p_k} \]

\[\rightarrow 0 \text{ as } n \rightarrow \infty. \]

Therefore \(\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_{m} x_k|}{\rho} \right)^{\frac{1}{k}} \right) \right]^{p_k} \rightarrow 0 \text{ as } n \rightarrow \infty. \)

Hence \(x \in \Gamma_F(\Delta_{m}, u, p, q) \). This completes the proof of (i). Similarly, we can prove (ii).

Theorem 2.5 Let \(0 \leq p_k \leq r_k \) and let \(\{ \frac{p_k}{r_k} \} \) be bounded. Then \(\Gamma_F(\Delta_{m}, u, r, q) \subset \Gamma_F(\Delta_{m}, u, p, q) \).

Proof. Let \(x = (x_k) \in \Gamma_F(\Delta_{m}, u, r, q) \). Then

\[\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_{m} x_k|}{\rho} \right)^{\frac{1}{r_k}} \right) \right]^{r_k} \rightarrow 0 \text{ as } n \rightarrow \infty. \]

Let \(t_k = \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_{m} x_k|}{\rho} \right)^{\frac{1}{r_k}} \right) \right]^{q_k} \)

and \(\lambda_k = \frac{p_k}{r_k} \).

Since \(p_k \leq r_k \), we have \(0 \leq \lambda_k \leq 1 \). Take \(0 < \lambda < \lambda_k \). Define

\[u_k = \begin{cases} t_k & \text{if } t_k \geq 1 \\ 0 & \text{if } t_k < 1 \end{cases} \]

and

\[v_k = \begin{cases} 0 & \text{if } t_k \geq 1 \\ t_k & \text{if } t_k < 1 \end{cases} \]

\[t_k = u_k + v_k, \quad t_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k}. \]

It follows that \(u_k^{\lambda_k} \leq u_k \leq t_k, \quad v_k^{\lambda_k} \leq v_k \).

Since \(t_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k} \), then \(t_k^{\lambda_k} \leq t_k + v_k^{\lambda_k} \). Thus

\[\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_{m} x_k|}{\rho} \right)^{\frac{1}{r_k}} \right) \right]^{r_k} \lambda_k \]

\[\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_{m} x_k|}{\rho} \right)^{\frac{1}{r_k}} \right) \right]^{r_k} \]
\[
\sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta^m u_k|}{\rho} \right)^{\frac{1}{p_k}} \right) \right]^{r_k} \rightarrow 0 \text{ as } n \rightarrow \infty.
\]

But
\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta^m u_k|}{\rho} \right)^{\frac{1}{p_k}} \right) \right]^{r_k} \rightarrow 0 \text{ as } n \rightarrow \infty.
\]

Therefore
\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta^m u_k|}{\rho} \right)^{\frac{1}{p_k}} \right) \right]^{p_k} \rightarrow 0 \text{ as } n \rightarrow \infty.
\]

Hence \(x = (x_k) \in \Gamma_F(\Delta^m u, r, q) \). Thus, we have
\[
\Gamma_F(\Delta^m u, r, q) \subset \Gamma_F(\Delta^m u, p, q).
\]

Theorem 2.6

(i) Let \(0 < \inf p_k \leq p_k \leq 1 \). Then
\[
\Gamma_F(\Delta^m u, p, q) \subset \Gamma_F(\Delta^m u, q),
\]

(ii) Let \(1 \leq p_k \leq \sup p_k < \infty \). Then \(\Gamma_F(\Delta^m u, q) \subset \Gamma_F(\Delta^m u, p, q) \).

Proof. (i) Let \(x = (x_k) \in \Gamma_F(\Delta^m u, p, q) \). Then
\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta^m u_k|}{\rho} \right)^{\frac{1}{p_k}} \right) \right]^{p_k} \rightarrow 0 \text{ as } n \rightarrow \infty.
\]

Since \(0 < \inf p_k \leq p_k \leq 1 \),
\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta^m u_k|}{\rho} \right)^{\frac{1}{p_k}} \right) \right] \leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta^m u_k|}{\rho} \right)^{\frac{1}{p_k}} \right) \right]^{p_k} \rightarrow 0
\]
as $n \to \infty$.
Thus, it follows that, $x = (x_k) \in \Gamma_F(\Delta_m, u, q)$. Thus $\Gamma_F(\Delta_m, u, p, q) \subset \Gamma_F(\Delta_m, u, q)$.

(ii) Let $p_k \geq 1$ for each k and sup $p_k < \infty$ and let $x = (x_k) \in \Gamma_F(\Delta_m, u, q)$. Then

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_m x_k|}{\rho} \right)^{\frac{1}{p_k}} \right) \right] \to 0 \text{ as } n \to \infty$$

Since $1 \leq p_k \leq \text{sup } p_k < \infty$, we have

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_m x_k|}{\rho} \right)^{\frac{1}{p_k}} \right) \right]^{p_k} \leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_m x_k|}{\rho} \right)^{\frac{1}{p_k}} \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

This implies that $x = (x_k) \in \Gamma_F(\Delta_m, u, p, q)$. Therefore

$$\Gamma_F(\Delta_m, u, q) \subset \Gamma_F(\Delta_m, u, p, q).$$

Theorem 2.7 Suppose $\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_m x_k|}{\rho} \right)^{\frac{1}{p_k}} \right) \right]^{p_k} \leq |x_k|^{1/k}$, then $\Gamma \subset \Gamma_F(\Delta_m, u, p, q)$.

Proof. Let $x = (x_k) \in \Gamma$. Then we have,

$$|x_k|^{1/k} \to 0 \text{ as } k \to \infty.$$

But $\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_m x_k|}{\rho} \right)^{\frac{1}{p_k}} \right) \right]^{p_k} \leq |x_k|^{1/k}$, by our assumption, implies that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta_m x_k|}{\rho} \right)^{\frac{1}{p_k}} \right) \right]^{p_k} \to 0 \text{ as } n \to \infty$$

Then $x = (x_k) \in \Gamma_F(\Delta_m, u, p, q)$ and $\Gamma \subset \Gamma_F(\Delta_m, u, p, q)$.

Theorem 2.8 $\Gamma_F(\Delta_m, u, p, q)$ is solid.
Proof. Let \(|x_k| \leq |y_k|\) and let \(y = (y_k) \in \Gamma_F(\Delta^m, u, p, q)\), because \(F = (f_k)\) is non-decreasing

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta^m x_k|}{\rho} \right)^{\frac{1}{p}} \right) \right]^{p_k} \leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta^m y_k|}{\rho} \right)^{\frac{1}{p}} \right) \right]^{p_k}
\]

Since \(y = (y_k) \in \Gamma_F(\Delta^m, u, p, q)\). Therefore,

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta^m y_k|}{\rho} \right)^{\frac{1}{p}} \right) \right]^{p_k} \to 0 \text{ as } n \to \infty
\]

and so that

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|u_k \Delta^m x_k|}{\rho} \right)^{\frac{1}{p}} \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.
\]

Therefore \(x = (x_k) \in \Gamma_F(\Delta^m, u, p, q)\).

Theorem 2.9 \(\Gamma_F(\Delta^m, u, p, q)\) is monotone.

Proof. It is trivial so we omit it.

3. Difference Entire sequence spaces over \(n\)-normed spaces

The concept of 2-normed spaces was initially developed by Gähler[6] in the mid of 1960’s, while that of \(n\)-normed spaces one can see in Misiak[14]. Since then, many others have studied this concept and obtained various results, see Gunawan ([7],[8]) and Gunawan and Mashadi [9]. For more details about the sequence spaces over \(n\)-normed spaces see ([15],[16]).

Let \(n \in \mathbb{N}\) and \(X\) be a linear space over the field \(\mathbb{K}\), where \(\mathbb{K}\) is field of real or complex numbers of dimension \(d\), where \(d \geq n \geq 2\). A real valued function \(|\cdot, \cdots, \cdot|\) on \(X^n\) satisfying the following four conditions:

1. \(|x_1, x_2, \cdots, x_n| = 0\) if and only if \(x_1, x_2, \cdots, x_n\) are linearly dependent in \(X\);

2. \(|x_1, x_2, \cdots, x_n|\) is invariant under permutation;
3. \[||\alpha x_1, x_2, \cdots, x_n|| = |\alpha| \ ||x_1, x_2, \cdots, x_n|| \] for any \(\alpha \in K \), and

4. \[||x + x', x_2, \cdots, x_n|| \leq ||x, x_2, \cdots, x_n|| + ||x', x_2, \cdots, x_n|| \]
is called an \(n \)-norm on \(X \), and the pair \((X, |||, \cdots, |||)\) is called a \(n \)-normed space over the field \(K \). For example, we may take \(X = \mathbb{R}^n \) being equipped with the \(n \)-norm \(||x_1, x_2, \cdots, x_n||_E = \) the volume of the \(n \)-dimensional parallelepiped spanned by the vectors \(x_1, x_2, \cdots, x_n \) which may be given explicitly by the formula

\[||x_1, x_2, \cdots, x_n||_E = |\det(x_{ij})|, \]

where \(x_i = (x_{i1}, x_{i2}, \cdots, x_{in}) \in \mathbb{R}^n \) for each \(i = 1, 2, \cdots, n \).

Let \((X, |||, \cdots, |||)\) be an \(n \)-normed space of dimension \(d \geq n \geq 2 \) and \(\{a_1, a_2, \cdots, a_n\} \) be linearly independent set in \(X \). Then the following function \(|||, \cdots, |||_\infty \) on \(X^{n-1} \) defined by

\[||x_1, x_2, \cdots, x_{n-1}||_\infty = \max\{||x_1, x_2, \cdots, x_{n-1}, a_i|| : i = 1, 2, \cdots, n\} \]
defines an \((n - 1)\)-norm on \(X \) with respect to \(\{a_1, a_2, \cdots, a_n\} \).

A sequence \((x_k)\) in a \(n \)-normed space \((X, |||, \cdots, |||)\) is said to converge to some \(L \in X \) if

\[\lim_{k \to \infty} ||x_k - L, z_1, \cdots, z_{n-1}|| = 0 \] for every \(z_1, \cdots, z_{n-1} \in X \).

A sequence \((x_k)\) in a \(n \)-normed space \((X, |||, \cdots, |||)\) is said to be Cauchy if

\[\lim_{k,p \to \infty} ||x_k - x_p, z_1, \cdots, z_{n-1}|| = 0 \] for every \(z_1, \cdots, z_{n-1} \in X \).

If every cauchy sequence in \(X \) converges to some \(L \in X \), then \(X \) is said to be complete with respect to the \(n \)-norm. Any complete \(n \)-normed space is said to be \(n \)-Banach space.

Let \(F = (f_k) \) be a sequence of modulus functions and let \(X \) be locally convex Hausdorff topological linear space whose topology is determined by
a set of continuous seminorms \(q \). The symbol \(\Lambda(X) \), \(\Gamma(X) \) denotes the space of all analytic and entire sequences respectively defined over \(X \). In this section we define the following sequences spaces:

\[
\Lambda_F(\Delta^m_s, u, p, q, ||, \cdots, ||) = \left\{ \left(x \in \Lambda(X) : \sup_n \frac{1}{n} \sum_{k=1}^{n} \left[f_k\left(q\left(\left(\frac{u_k \Delta^m_s x_k}{\rho} \right)^{1/k}, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \right) < \infty, \text{ for some } \rho > 0 \right\},
\]

\[
\Gamma_F(\Delta^m_s, u, p, q, ||, \cdots, ||) = \left\{ \left(x \in \Gamma(X) : \frac{1}{n} \sum_{k=1}^{n} \left[f_k\left(q\left(\left(\frac{u_k \Delta^m_s x_k}{\rho} \right)^{1/k}, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \rightarrow 0 \text{ as } n \rightarrow \infty, \text{ for some } \rho > 0 \right\}.
\]

If we take \(p = (p_k) = 1 \), we get

\[
\Lambda_F(\Delta^m_s, u, q, ||, \cdots, ||) = \left\{ \left(x \in \Lambda(X) : \sup_n \frac{1}{n} \sum_{k=1}^{n} \left[f_k\left(q\left(\left(\frac{u_k \Delta^m_s x_k}{\rho} \right)^{1/k}, z_1, \cdots, z_{n-1} \right) \right) \right] \right) < \infty, \text{ for some } \rho > 0 \right\},
\]

\[
\Gamma_F(\Delta^m_s, u, q, ||, \cdots, ||) = \left\{ \left(x \in \Gamma(X) : \frac{1}{n} \sum_{k=1}^{n} \left[f_k\left(q\left(\left(\frac{u_k \Delta^m_s x_k}{\rho} \right)^{1/k}, z_1, \cdots, z_{n-1} \right) \right) \right] \rightarrow 0 \text{ as } n \rightarrow \infty, \text{ for some } \rho > 0 \right\}.
\]

In this section of the paper we study some topological properties of the spaces \(\Lambda_F(\Delta^m_s, u, p, q, ||, \cdots, ||) \) and \(\Gamma_F(\Delta^m_s, u, p, q, ||, \cdots, ||) \). We also examine some inclusion relation between these spaces.

Theorem 3.1 Let \(F = (f_k) \) be a sequence of modulus functions and \(p = (p_k) \) be bounded sequence of strictly positive real numbers, then

\(\Gamma_F(\Delta^m_s, u, p, q, ||, \cdots, ||) \) and \(\Lambda_F(\Delta^m_s, u, p, q, ||, \cdots, ||) \) are linear spaces
over the set of complex numbers \(\mathbb{C} \).

Proof. \(x = (x_k), y = (y_k) \in \Gamma_F(\Delta^m_s, u, p, q, ||\cdot||, \cdots, ||\cdot||) \) and \(\alpha, \beta \in \mathbb{C} \). In order to prove the result, we need to find some \(\rho_3 > 0 \) such that

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{u_k \Delta^m_s (\alpha x_k + \beta y_k) z_{1, \ldots, z_{n-1}}}{\rho_3} \right)^{\frac{1}{k}}, z_{1, \ldots, z_{n-1}} \right) \right]^{p_k} \to 0 \quad \text{as} \quad n \to \infty.
\]

Since \(x = (x_k), y = (y_k) \in \Gamma_F(\Delta^m_s, u, p, q, ||\cdot||, \cdots, ||\cdot||) \), there exist some positive \(\rho_1 \) and \(\rho_2 \) such that

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{u_k \Delta^m_s x_k}{\rho_1} \right)^{\frac{1}{k}}, z_{1, \ldots, z_{n-1}} \right) \right]^{p_k} \to 0 \quad \text{as} \quad n \to \infty
\]

and

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{u_k \Delta^m_s y_k}{\rho_2} \right)^{\frac{1}{k}}, z_{1, \ldots, z_{n-1}} \right) \right]^{p_k} \to 0 \quad \text{as} \quad n \to \infty.
\]

Since \(F = (f_k) \) is a non-decreasing function, \(q \) is a seminorm and \(\Delta^m_s \) is linear, then

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{u_k \Delta^m_s (\alpha x_k + \beta y_k) z_{1, \ldots, z_{n-1}}}{\rho_3} \right)^{\frac{1}{k}}, z_{1, \ldots, z_{n-1}} \right) \right]^{p_k}
\]

\[
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{u_k \Delta^m_s x_k}{\rho_1} \right)^{\frac{1}{k}}, z_{1, \ldots, z_{n-1}} \right) \right]^{p_k} + \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{u_k \Delta^m_s y_k}{\rho_2} \right)^{\frac{1}{k}}, z_{1, \ldots, z_{n-1}} \right) \right]^{p_k}
\]

so that

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{u_k \Delta^m_s (\alpha x_k + \beta y_k) z_{1, \ldots, z_{n-1}}}{\rho_3} \right)^{\frac{1}{k}}, z_{1, \ldots, z_{n-1}} \right) \right]^{p_k}
\]

\[
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(\left(\frac{\alpha u_k \Delta^m_s x_k}{\rho_3} \right)^{\frac{1}{k}}, z_{1, \ldots, z_{n-1}} \right) \right]^{p_k}
\]

\[
+ \left| \frac{\beta u_k \Delta^m_s y_k}{\rho_3} \right|^{p_k}, z_{1, \ldots, z_{n-1}} \right) \right]^{p_k}.
\]
Since $\rho_3 > 0$ such that $\frac{1}{\rho} = \min \left\{ \frac{1}{|\alpha| \rho_1}, \frac{1}{|\beta| \rho_2} \right\}$

$$\frac{1}{n} n \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\| \frac{(u_k \Delta^m \alpha x_k + \beta y_k)}{\rho_1} \|^p}{\rho_1}, z_1, \cdots, z_{n-1} \| \right) \right) \right]^{p_k}$$

$$\leq \frac{1}{n} n \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\| \frac{(u_k \Delta^m y_k)}{\rho_2} \|^p}{\rho_2}, z_1, \cdots, z_{n-1} \| \right) \right) \right]^{p_k}$$

$$+ \left[f_k \left(q \left(\frac{\| \frac{(u_k \Delta^m \alpha x_k)}{\rho_1} \|^p}{\rho_1}, z_1, \cdots, z_{n-1} \| \right) \right) \right]^{p_k}$$

$$\leq K^{\frac{1}{n}} n \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\| \frac{(u_k \Delta^m y_k)}{\rho_2} \|^p}{\rho_2}, z_1, \cdots, z_{n-1} \| \right) \right) \right]^{p_k}$$

$$+ K^{\frac{1}{n}} n \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\| \frac{(u_k \Delta^m \alpha x_k)}{\rho_1} \|^p}{\rho_1}, z_1, \cdots, z_{n-1} \| \right) \right) \right]^{p_k}$$

$\rightarrow 0$ as $n \rightarrow \infty$.

Hence

$$\sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\| \frac{(u_k \Delta^m \alpha x_k + \beta y_k)}{\rho_3} \|^p}{\rho_3}, z_1, \cdots, z_{n-1} \| \right) \right) \right]^{p_k} \rightarrow 0$ as $n \rightarrow \infty$.

This proves that $\Gamma_F(\Delta^m, u, p, q, \|., .\|)$ is a linear space. Similarly, we can prove that $\Lambda_F(\Delta^m, u, p, q, \|., .\|)$ is a linear space.

Theorem 3.2 Let $F = (f_k)$ be a sequence of modulus functions and $p = (p_k)$ be bounded sequence of strictly positive real numbers, $\Gamma_F(\Delta^m, u, p, q, \|., .\|)$ is paranormed space with paranorm defined by

$$g(x) = \inf \left\{ \rho^{\frac{m}{p}} : \sup_{k \geq 1} \left[f_k \left(q \left(\frac{\| \frac{(u_k \Delta^m x_k)}{\rho} \|^p}{\rho}, z_1, \cdots, z_{n-1} \| \right) \right) \right]^{p_k} \leq 1, \rho > 0, m \in \mathbb{N} \right\},$$

where $H = \max(1, \sup_k p_k)$.
Proof. Clearly \(g(x) \geq 0 \), \(g(x) = g(-x) \) and \(g(\theta) = 0 \), where \(\theta \) is the zero sequence of \(X \).

Let \((x_k), (y_k) \in \Gamma_F(\Delta_m^u, u, p, q, ||., \cdot., .||) \). Let \(\rho_1, \rho_2 > 0 \) be such that

\[
\sup_{k \geq 1} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta_m^u x_k)}{\rho_1} \right\|_{z_1, \cdots, z_{n-1}} \right) \right) \right]^{p_k} \leq 1
\]

and

\[
\sup_{k \geq 1} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta_m^u y_k)}{\rho_2} \right\|_{z_1, \cdots, z_{n-1}} \right) \right) \right]^{p_k} \leq 1.
\]

Let \(\rho = \rho_1 + \rho_2 \). Then by using Minkowski’s inequality, we have

\[
\sup_{k \geq 1} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta_m^u (x_k + y_k))}{\rho} \right\|_{z_1, \cdots, z_{n-1}} \right) \right) \right]^{p_k}
\]

\[
\leq \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \sup_{k \geq 1} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta_m^u x_k)}{\rho_1} \right\|_{z_1, \cdots, z_{n-1}} \right) \right) \right]^{p_k}
\]

\[
+ \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \sup_{k \geq 1} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta_m^u y_k)}{\rho_2} \right\|_{z_1, \cdots, z_{n-1}} \right) \right) \right]^{p_k}
\]

\[
\leq 1.
\]

Hence

\[
g(x + y)
\]

\[
\leq \inf \left\{ (\rho_1 + \rho_2)^{\frac{m}{\rho_1 + \rho_2}} : \sup_{k \geq 1} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta_m^u x_k)}{\rho_1 + \rho_2} \right\|_{z_1, \cdots, z_{n-1}} \right) \right) \right]^{p_k} \leq 1, \rho_1, \rho_2 > 0, m \in N \right\}
\]

\[
\leq \inf \left\{ (\rho_1)^{\frac{m}{\rho_1}} : \sup_{k \geq 1} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta_m^u x_k)}{\rho_1} \right\|_{z_1, \cdots, z_{n-1}} \right) \right) \right]^{p_k} \leq 1, \rho_1 > 0, m \in N \right\}
\]

\[
+ \inf \left\{ (\rho_2)^{\frac{m}{\rho_2}} : \sup_{k \geq 1} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta_m^u y_k)}{\rho_2} \right\|_{z_1, \cdots, z_{n-1}} \right) \right) \right]^{p_k} \leq 1, \rho_2 > 0, m \in N \right\}
\]
Thus we have $g(x + y) \leq g(x) + g(y)$. Hence g satisfies the triangle inequality.

$$g(\lambda x) = \inf \left\{ (\rho)^{\frac{m}{k}} : \sup_{k \geq 1} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta^m \Delta x_k)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right) \right]^{\frac{1}{pk}} \leq 1, \right\}$$

$$\rho > 0, \ m \in N$$

$$= \inf \left\{ (r|\lambda|)^{\frac{m}{k}} : \sup_{k \geq 1} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta^m \Delta x_k)}{r}, z_1, \cdots, z_{n-1} \right\| \right) \right) \right]^{\frac{1}{pk}} \leq 1, \right\}$$

$$r > 0, \ m \in N,$$

where $r = |\rho|$

Hence $\Gamma_F(\Delta^m u, p, q, ||, \cdots, ||)$ is a paranormed space.

Theorem 3.3 Let $F' = (f'_k)$ and $F'' = (f''_k)$ be two sequences of modulus functions.

Then $\Gamma_{F'}(\Delta^m u, p, q, ||, \cdots, ||) \cap \Gamma_{F''}(\Delta^m u, p, q, ||, \cdots, ||)$

$$\subseteq \Gamma_{F' + F''}(\Delta^m u, p, q, ||, \cdots, ||).$$

Proof. Let $x = (x_k) \in \Gamma_{F'}(\Delta^m u, p, q, ||, \cdots, ||) \cap \Gamma_{F''}(\Delta^m u, p, q, ||, \cdots, ||)$.

Then there exist ρ_1 and ρ_2 such that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f'_k \left(q \left(\left\| \frac{(u_k \Delta^m \Delta x_k)}{\rho_1}, z_1, \cdots, z_{n-1} \right\| \right) \right) \right]^{\frac{1}{pk}} \rightarrow 0 \text{ as } n \rightarrow \infty.$$

and

$$\frac{1}{n} \sum_{k=1}^{n} \left[f''_k \left(q \left(\left\| \frac{(u_k \Delta^m \Delta x_k)}{\rho_2}, z_1, \cdots, z_{n-1} \right\| \right) \right) \right]^{\frac{1}{pk}} \rightarrow 0 \text{ as } n \rightarrow \infty.$$

Let $\frac{1}{\rho} = \min \left(\frac{1}{\rho_1}, \frac{1}{\rho_2} \right)$. Then we have

$$\frac{1}{n} \sum_{k=1}^{n} \left[(f'_k + f''_k) \left(q \left(\left\| \frac{(u_k \Delta^m \Delta x_k)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right) \right]^{\frac{1}{pk}}$$
\[
\leq K \left[\frac{1}{n} \sum_{k=1}^{n} \left[f_k' \left(q \left(\left\| \frac{(u_k \Delta^m x_k)_{\frac{1}{p}}}{\rho} \right\|, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \right] \\
+ K \left[\frac{1}{n} \sum_{k=1}^{n} \left[f_k'' \left(q \left(\left\| \frac{(u_k \Delta^m x_k)_{\frac{1}{p}}}{\rho} \right\|, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \right]
\]

\[\to 0 \text{ as } n \to \infty\]

Then

\[\frac{1}{n} \sum_{k=1}^{n} \left[(f_k' + f_k'') \left(q \left(\left\| \frac{(u_k \Delta^m x_k)_{\frac{1}{p}}}{\rho} \right\|, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.\]

Therefore \(x = (x_k) \in \Gamma_{F'+F''}(\Delta^m, u, p, q, ||\cdot||, \cdots, ||\cdot||).\)

Theorem 3.4 Let \(m \geq 1.\) Then we have the following inclusions:

(i) \(\Gamma_{F}(\Delta^{m-1}, u, p, q, ||\cdot||, \cdots, ||\cdot||) \subseteq \Gamma_{F}(\Delta^m, u, p, q, ||\cdot||, \cdots, ||\cdot||),\)

(ii) \(\Lambda_{F}(\Delta^{m-1}, u, p, q, ||\cdot||, \cdots, ||\cdot||) \subseteq \Lambda_{F}(\Delta^m, u, p, q, ||\cdot||, \cdots, ||\cdot||).\)

Proof. Let \(x = (x_k) \in \Gamma_{F}(\Delta^m, u, p, q, ||\cdot||, \cdots, ||\cdot||).\) Then we have

\[\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta^m x_k)_{\frac{1}{p}}}{\rho} \right\|, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty, \text{ for some }\]

\(\rho > 0.\)

Since \(F = (f_k)\) is non-decreasing and \(q\) is a seminorm, we have

\[\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta^m x_k)_{\frac{1}{p}}}{\rho} \right\|, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k}
\]

\[\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta^m x_k - u_k \Delta^{m-1} x_{k+1})_{\frac{1}{p}}}{\rho} \right\|, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k}
\]

\[\leq K \left\{ \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta^{m-1} x_{k+1})_{\frac{1}{p}}}{\rho} \right\|, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \right\}
\]

\[\to 0 \text{ as } n \to \infty.\]

Therefore \(\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left\| \frac{(u_k \Delta^m x_k)_{\frac{1}{p}}}{\rho} \right\|, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.\)
Hence \(x = (x_k) \in \Gamma_F(\Delta^m_u, u, p, q, ||, \cdots, ||) \). This completes the proof of (i). Similarly, we can prove (ii).

Theorem 3.5 Let \(0 \leq p_k \leq r_k \) and let \(\{ \frac{p_k}{r_k} \} \) be bounded. Then

\[
\Gamma_F(\Delta^m_u, u, r, q, ||, \cdots, ||) \subset \Gamma_F(\Delta^m_u, u, p, q, ||, \cdots, ||)
\]

Proof. Let \(x \in \Gamma_F(\Delta^m_u, u, r, q, ||, \cdots, ||) \). Then

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|| (u_k \Delta^m x_k) ^\frac{1}{r} \|, z_1, \cdots, z_{n-1} ||}{\rho} \right) \right) \right]^{r_k} \to 0 \quad \text{as} \; n \to \infty.
\]

Let \(t_k = \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|| (u_k \Delta^m x_k) ^\frac{1}{r} \|, z_1, \cdots, z_{n-1} ||}{\rho} \right) \right) \right]^{q_k} \) and \(\lambda_k = \frac{p_k}{r_k} \).

Since \(p_k \leq r_k \), we have \(0 \leq \lambda_k \leq 1 \). Take \(0 < \lambda < \lambda_k \). Define

\[
u_k = \begin{cases} \lambda_k & \text{if } t_k \geq 1 \\ 0 & \text{if } t_k < 1 \end{cases}
\]

and

\[
u_k = \begin{cases} 0 & \text{if } t_k \geq 1 \\ t_k & \text{if } t_k < 1 \end{cases}
\]

\(t_k = u_k + v_k \), \(t_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k} \). It follows that \(u_k^{\lambda_k} \leq u_k \leq t_k \), \(v_k^{\lambda_k} \leq v_k^{\lambda_k} \).

Since \(t_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k} \), then \(t_k^{\lambda_k} \leq t_k + v_k^{\lambda_k} \). So that

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|| (u_k \Delta^m x_k) ^\frac{1}{r} \|, z_1, \cdots, z_{n-1} ||}{\rho} \right) \right) \right]^{r_k} \lambda_k
\]

\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|| (u_k \Delta^m x_k) ^\frac{1}{r} \|, z_1, \cdots, z_{n-1} ||}{\rho} \right) \right) \right]^{r_k}

This implies that

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|| (u_k \Delta^m x_k) ^\frac{1}{r} \|, z_1, \cdots, z_{n-1} ||}{\rho} \right) \right) \right]^{r_k} \frac{p_k}{r_k}
\]

\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|| (u_k \Delta^m x_k) ^\frac{1}{r} \|, z_1, \cdots, z_{n-1} ||}{\rho} \right) \right) \right]^{r_k}
\[\Rightarrow \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left\| \frac{u_k \Delta^m x_k}{\rho} \right\|^{\frac{1}{r}}, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \]

\[\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left\| \frac{u_k \Delta^m x_k}{\rho} \right\|^{\frac{1}{r}}, z_1, \cdots, z_{n-1} \right) \right) \right]^{r_k}. \]

But

\[\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left\| \frac{u_k \Delta^m x_k}{\rho} \right\|^{\frac{1}{r}}, z_1, \cdots, z_{n-1} \right) \right) \right]^{r_k} \to 0 \text{ as } n \to \infty. \]

Therefore

\[\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left\| \frac{u_k \Delta^m x_k}{\rho} \right\|^{\frac{1}{r}}, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty. \]

Hence \(x = (x_k) \in \Gamma_F(\Delta^m, u, p, q, \| \cdot \|, \cdots, \| \cdot \|). \) Thus, we get

\[\Gamma_F(\Delta^m, u, r, q, \| \cdot \|, \cdots, \| \cdot \|) \subset \Gamma_F(\Delta^m, u, p, q, \| \cdot \|, \cdots, \| \cdot \|). \]

Theorem 3.6 (i) Let \(0 < \inf p_k \leq p_k \leq 1. \) Then

\[\Gamma_F(\Delta^m, u, p, q, \| \cdot \|, \cdots, \| \cdot \|) \subset \Gamma_F(\Delta^m, u, q, \| \cdot \|, \cdots, \| \cdot \|), \]

(ii) Let \(1 \leq p_k \leq \sup p_k < \infty. \) Then

\[\Gamma_F(\Delta^m, u, q, \| \cdot \|, \cdots, \| \cdot \|) \subset \Gamma_F(\Delta^m, u, p, q, \| \cdot \|, \cdots, \| \cdot \|). \]

Proof. (i) Let \(x = (x_k) \in \Gamma_F(\Delta^m, u, p, q, \| \cdot \|, \cdots, \| \cdot \|). \) Then

\[\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left\| \frac{u_k \Delta^m x_k}{\rho} \right\|^{\frac{1}{r}}, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty. \]

Since \(0 < \inf p_k \leq p_k \leq 1, \)

\[\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left\| \frac{u_k \Delta^m x_k}{\rho} \right\|^{\frac{1}{r}}, z_1, \cdots, z_{n-1} \right) \right) \right] \]

\[\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left\| \frac{u_k \Delta^m x_k}{\rho} \right\|^{\frac{1}{r}}, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty. \]
Thus, it follows that, $x = (x_k) \in \Gamma_F(\Delta_s^m, u, q, ||\cdot||, \ldots, ||\cdot||)$. Therefore $\Gamma_F(\Delta_s^m, u, p, q, ||\cdot||, \ldots, ||\cdot||) \subset \Gamma_F(\Delta_s^m, u, q, ||\cdot||, \ldots, ||\cdot||)$.

(ii) Let $p_k \geq 1$ for each k and sup $p_k < \infty$ and let

$$x = (x_k) \in \Gamma_F(\Delta_s^m, u, q, ||\cdot||, \ldots, ||\cdot||).$$

Then

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\|u_k \Delta_s^m x_k\|^{\frac{1}{k}}}{\rho}, z_1, \ldots, z_{n-1} \right) \right) \right] \to 0 \text{ as } n \to \infty.$$

Since $1 \leq p_k \leq \sup p_k < \infty$, we have

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\|u_k \Delta_s^m x_k\|^{\frac{1}{k}}}{\rho}, z_1, \ldots, z_{n-1} \right) \right) \right] \leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\|u_k \Delta_s^m x_k\|^{\frac{1}{k}}}{\rho}, z_1, \ldots, z_{n-1} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Hence

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\|u_k \Delta_s^m x_k\|^{\frac{1}{k}}}{\rho}, z_1, \ldots, z_{n-1} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

This implies that $x = (x_k) \in \Gamma_F(\Delta_s^m, u, p, q, ||\cdot||, \ldots, ||\cdot||)$. Therefore $\Gamma_F(\Delta_s^m, u, q, ||\cdot||, \ldots, ||\cdot||) \subset \Gamma_F(\Delta_s^m, u, p, q, ||\cdot||, \ldots, ||\cdot||)$.

Theorem 3.7 Suppose

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\|u_k \Delta_s^m x_k\|^{\frac{1}{k}}}{\rho}, z_1, \ldots, z_{n-1} \right) \right) \right]^{p_k} \leq |x_k|^{1/k},$$

then $\Gamma \subset \Gamma_F(\Delta_s^m, u, p, q, ||\cdot||, \ldots, ||\cdot||)$.

Proof. Let $x = (x_k) \in \Gamma$. Then we have,

$$|x_k|^{1/k} \to 0 \text{ as } k \to \infty.$$

But

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\|u_k \Delta_s^m x_k\|^{\frac{1}{k}}}{\rho}, z_1, \ldots, z_{n-1} \right) \right) \right]^{p_k} \leq |x_k|^{1/k},$$

by our assumption, implies that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\|u_k \Delta_s^m x_k\|^{\frac{1}{k}}}{\rho}, z_1, \ldots, z_{n-1} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty \text{ by (10)}.$$
Then \(x = (x_k) \in \Gamma_F(\Delta^m, u, p, q, ||., .||) \) and \(\Gamma \subset \Gamma_F(\Delta^m, u, p, q, ||., .||) \).

Theorem 3.8 \(\Gamma_F(\Delta^m, u, p, q, ||., .||) \) is solid.

Proof. Let \(|x_k| \leq |y_k| \) and let \(y = (y_k) \in \Gamma_F(\Delta^m, u, p, q, ||., .||) \), because \(F = (f_k) \) is non-decreasing, so that

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\|u_k \Delta^m x_k\|^\frac{1}{r}}{\rho}, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\|u_k \Delta^m y_k\|^\frac{1}{r}}{\rho}, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k}
\]

Since \(y \in \Gamma_F(\Delta^m, u, p, q, ||., .||) \). Therefore,

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\|u_k \Delta^m y_k\|^\frac{1}{r}}{\rho}, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \rightarrow 0 \text{ as } n \rightarrow \infty
\]

and

\[
\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\|u_k \Delta^m x_k\|^\frac{1}{r}}{\rho}, z_1, \cdots, z_{n-1} \right) \right) \right]^{p_k} \rightarrow 0 \text{ as } n \rightarrow \infty.
\]

Therefore \(x = (x_k) \in \Gamma_F(\Delta^m, u, p, q) \).

Theorem 3.9 \(\Gamma_F(\Delta^m, u, p, q, ||., .||) \) is monotone.

Proof. It is trivial so we omit it.

Acknowledgement

The authors thank the referee for his valuable suggestions that improved the presentation of the paper.
References

Kuldip Raj
School of Mathematics
Shri Mata Vaishno Devi University,
Katra-182320,
J & K, India
e-mail : kuldipraj68@gmail.com

Sunil K. Sharma
School of Mathematics
Shri Mata Vaishno Devi University,
Katra-182320,
J & K, India
e-mail : sunilksharma42@yahoo.co.in

and
Amit Gupta
School of Mathematics
Shri Mata Vaishno Devi University,
Katra-182320,
J & K, India
e-mail: