Bounded linear operators for some new matrix transformations

M. AIYUB
University of Bahrain, Kingdom of Bahrain
Received: March 2012. Accepted: April 2012

Abstract
In this paper, we define \((\sigma, \theta)\)-convergence and characterize \((\sigma, \theta)\)-
conservative, \((\sigma, \theta)\)-regular, \((\sigma, \theta)\)-coercive matrices and we also deter-
mine the associated bounded linear operators for these matrix classes.

AMS Subject Classification (2000) : 46A45, 40H05.

Keywords and phrases : Sequence spaces; invariant mean; ma-
trix transformation; bounded linear operators.
1. Introduction and preliminaries

We shall write \(w \) for the set of all complex sequences \(x = (x_k)_{k=0}^\infty \). Let \(\phi, \ell_\infty, c \) and \(c_0 \) denote the sets of all finite, bounded, convergent and null sequences respectively; and \(cs \) be the set of all convergent series. We write \(\ell_p := \{ x \in w : \sum_{k=0}^\infty |x_k|^p < \infty \} \) for \(1 \leq p < \infty \). By \(e \) and \(e^{(n)}(n \in \mathbb{N}) \), we denote the sequences such that \(e_k = 1 \) for \(k = 0, 1, \ldots \), and \(e^{(n)}_0 = 1 \) and \(e^{(n)}_k = 0(k \neq n) \). For any sequence \(x = (x_k)_{k=0}^\infty \), let \(x^{[n]} = \sum_{k=0}^n x_k e^{(k)} \) be its \(n \)-section.

Note that \(c_0, c \), and \(\ell_\infty \) are Banach spaces with the sup-norm \(\| x \|_\infty = \sup_k |x_k| \), and \(\ell_p(1 \leq p < \infty) \) are Banach spaces with the norm \(\| x \|_p = (\sum |x_k|^p)^{1/p} \); while \(\phi \) is not a Banach space with respect to any norm.

A sequence \((b^{(n)}_{(n)})_{n=0}^\infty \) in a linear metric space \(X \) is called Schauder basis if for every \(x \in X \), there is a unique sequence \((\beta_n)_{n=0}^\infty \) of scalars such that \(x = \sum_{n=0}^\infty \beta_n b^{(n)} \).

Let \(X \) and \(Y \) be two sequence spaces and \(A = (a_{nk})_{n,k=1}^\infty \) be an infinite matrix of real or complex numbers. We write \(Ax = (A_n(x)) \), \(A_n(x) = \sum_k a_{nk}x_k \) provided that the series on the right converges for each \(n \). If \(x = (x_k) \in X \) implies that \(Ax \in Y \), then we say that \(A \) defines a matrix transformation from \(X \) into \(Y \) and by \((X, Y) \) we denote the class of such matrices.

Let \(\sigma \) be a one-to-one mapping from the set \(\mathbb{N} \) of natural numbers into itself. A continuous linear functional \(\varphi \) on the space \(\ell_\infty \) is said to be an invariant mean or a \(\sigma \)-mean if and only if (i) \(\varphi(x) \geq 0 \) if \(x \geq 0 \) (i.e. \(x_k \geq 0 \) for all \(k \)), (ii) \(\varphi(e) = 1 \), where \(e = (1, 1, 1, \cdots) \), (iii) \(\varphi(x) = \varphi((x_{\sigma(k)})) \) for all \(x \in \ell_\infty \).

Throughout this paper we consider the mapping \(\sigma \) which has no finite orbits, that is, \(\sigma^p(k) \neq k \) for all integer \(k \geq 0 \) and \(p \geq 1 \), where \(\sigma^p(k) \) denotes the \(p \)th iterate of \(\sigma \) at \(k \). Note that, a \(\sigma \)-mean extends the limit functional on the space \(c \) in the sense that \(\varphi(x) = \lim x \) for all \(x \in c \), (cf [10]). Consequently, \(c \subset V_\sigma \), the set of bounded sequences all of whose \(\sigma \)-means are equal. We say that a sequence \(x = (x_k) \) is \(\sigma \)-convergent if and only if \(x \in V_\sigma \).

\[V_\sigma = \{ x \in \ell_\infty : \lim_{p \to \infty} t_{pn}(x) = L, \text{ uniformly in } n \}. \]

where \(L = \sigma - \lim x \), where
\[t_{pn}(x) = \frac{1}{p+1} \sum_{m=0}^p x_{\sigma^m(n)}. \]

Using the concept of Schaefer [17] defined and characterized the \(\sigma \)-conservative, \(\sigma \)-regular and \(\sigma \)-coercive matrices. If \(\sigma \) is translation then
the σ-mean often called Banach Limit [2] and the set V_σ reduces to the set f of almost convergent sequence studied by Lorenz [9]. By a lacunary sequence we mean an increasing sequence $\theta = (k_r)$ of integers such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. Throughout this paper the intervals determined by θ will be denoted by $I_r := (k_{r-1} - k_r]$, and the ratio k_r/k_{r-1} will be abbreviated by q_r (see Fredman et al[8]). Recently, Aydin[1] defined the concept of almost lacunary convergent as follow: A bounded sequence $x = (x_k)$ is said be almost lacunary convergent to the number c if and only if
\[
\lim_{r \to \infty} \frac{1}{h_r} \sum_{j \in I_r} x_{j+n} = \ell , \text{ uniformly in } n.
\]

The idea of σ-convergence for double sequences was introduced in [4] and further studied recently in [3] and [15]. In [11]-[14] we study various classes of four dimensional matrices, e.g. σ-regular, σ-conservative, regularly σ-conservative, boundedly σ-conservative and σ-coercive matrices.

In this paper, we define (σ, θ)-convergence. We also generalize the above matrices by characterizing the (σ, θ)-conservative, (σ, θ)-regular and (σ, θ)-coercive matrices. Further, we also determine the associated bounded linear operators for these matrix classes, which is the generalized result of Mur-saleen, M.A. Jarrah and S.Mouhiddin see ref [15]

2. (σ, θ) -Lacunary convergent sequences

We define the following:

Definition 2.1. [Sir paper, 2009] A bounded sequence $x = (x_k)$ of real numbers is said to be (σ, θ)-lacunary convergent to a number ℓ if and only if
\[
\lim_{r \to \infty} \frac{1}{h_r} \sum_{j \in I_r} x_{\sigma_j(n)} = \ell , \text{ uniformly in } n, \text{ and let } V_\sigma(\theta), \text{ denote the set of all such sequences, i.e where}
\]
\[
V_\sigma(\theta) = \{ x \in \ell_\infty : \lim_{r \to \infty} \frac{1}{h_r} \sum_{j \in I_r} x_{\sigma_j(n)} = \ell , \text{ uniformly in } n \}
\]

Note that for $\sigma(n) = n + 1$, σ-lacunary convergence is reduced to almost lacunary convergence. Results similar to that Aydin[1] can easily be proved for the space $V_\sigma(\theta)$.

Definition 2.2. A bounded sequence $x = (x_k)$ of real numbers is said to be σ-lacunary bounded if and only if $\sup_{r,n} \left| \frac{1}{h_r} \sum_{j \in I_r} x_{\sigma_j(n)} \right| < \infty$, and we let $V_\sigma^\infty(\theta)$, denot the set of all such sequences
\[
V_\sigma^\infty(\theta) = \{ x \in \ell_\infty : \sup_{r,n} \left| \tau_{r,n}(x) \right| < \infty \}.
\]
Where
\[\tau_{tn}(x) = \frac{1}{h_r} \sum_{j \in I_r} x_{\sigma_j(n)}, \]
Note that \(c \subset V_\sigma(\theta) \subset V_\sigma^\infty(\theta) \subset \ell_\infty. \)

Definition 2.3. An infinite matrix \(A = (a_{nk}) \) is said to be \((\sigma, \theta)\)-conservative if and only if \(Ax \in V_\sigma(\theta) \) for all \(x = (x_k) \in c \) and we denote this by \(A \in (c, V_\sigma(\theta)) \).

Definition 2.4. We say that, infinite matrix \(A = (a_{nk}) \) is said to be \((\sigma, \theta)\)-regular if and only if it is \(V_\sigma(\theta) \)-conservative and \((\sigma, \theta)\)-lim \(Ax = \lim x \) for all \(x \in c \) and we denote this by \(A \in (c, V_\sigma(\theta))_{\text{reg}} \).

Definition 2.5. A matrix \(A = (a_{nk}) \) is said to be \((\sigma, \theta)\)-coercive if and only if \(Ax \in V_\sigma(\theta) \) for all \(x = (x_k) \in \ell_\infty \) and we denote this by \(A \in (\ell_\infty, V_\sigma(\theta)) \).

Remark 2.6. If we take \(h_r = r \) then \(V_\sigma(\theta) \) is reduced to the space \(V_\sigma \) and \((\sigma, \theta)\)-conservative, \((\sigma, \theta)\)-regular, \((\sigma, \theta)\)-coercive matrices are respectively reduced to \(\sigma \)-conservative, \(\sigma \)-regular, \(\sigma \)-coercive matrices (cf [15]); and in addition if \(\sigma(n) = n + 1 \) then the space \(V_\sigma(\theta) \) is reduced to the space \(f \) of almost convergent sequences (cf [9]) and these matrices are reduced to the almost conservative, almost regular (cf [7]) and almost coercive matrices respectively (cf [6]).

3. \((\sigma, \theta)\)-conservative matrices and bounded linear operators

In the following theorem we characterize \((\sigma, \theta)\)-conservative matrices and find the associated bounded linear operator.

Theorem 3.1. A matrix \(A = (a_{nk}) \) is \((\sigma, \theta)\)-conservative, i.e. \(A \in (c, V_\sigma(\theta)) \) if and only if it satisfies the condition

\begin{enumerate}
 \item \(\|A\| = \sup_n \sum_k |a_{nk}| < \infty; \)
 \item \(a_{(k)} = (a_{nk})_{n=1}^\infty \in V_\sigma(\theta) \), for each \(k \);
 \item \(a = \left(\sum_k a_{nk} \right)_{n=1}^\infty \in V_\sigma(\theta). \)
\end{enumerate}

In this case, the \((\sigma, \theta)\)-limit of \(Ax \) is \(\lim x \left[u - \sum_k u_k \right] + \sum_k x_k u_k \), where \(u = (\sigma, \theta)\)-lim \(a \) and \(u_k = (\sigma, \theta)\)-lim \(a_k \), \(k = 1, 2, \cdots \).
Proof. Sufficiency. Let the conditions hold. Let r be any non-negative integer and $x = (x_k) \in c$. For every positive integer n; write \[\tau_{r_n}(x) = \frac{1}{n^r} \sum_{k=1}^{\infty} \sum_{j \in I_r} a_{\sigma^i(n),k} x_k \] Then we have \[-\tau_{r_n}(x) \leq \frac{1}{n^r} \sum_{k=1}^{\infty} \sum_{j \in I_r} |a_{\sigma^i(n),k}| \|x_k\| \leq \frac{\|\|\|}{n^r} \sum_{k=1}^{\infty} \sum_{j \in I_r} |a_{\sigma^i(n),k}| \|x\| \]. Since τ_{r_n} is obviously linear on c, it follows that $\tau_{r_n} \in c'$ and $\|\tau_{r_n}\| \leq \|A\|$.

Now, \[\tau_{r_n}(e) = \frac{1}{n^r} \sum_{k=1}^{\infty} \sum_{j \in I_r} a_{\sigma^i(n),k} = \frac{1}{n^r} \sum_{k=1}^{\infty} \sum_{j \in I_r} a_{\sigma^i(n),k} \text{that is,} \lim_{r} \tau_{r_n}(e) \text{ exists uniformly in } n \text{ and } \lim_{r} \tau_{r_n}(e) = u \text{ uniformly in } n, \text{ the } (\sigma, \theta)\text{-limit of } a \text{, since } a \in V^\sigma_\sigma(\theta) \text{. Similarly, } \lim_{r} \tau_{r_n}e^k = u_k, \text{ the } (\sigma, \theta)\text{-limit of } a_{(k)} \text{ for each } k \text{, uniformly in } n \text{. Since } \{e,e^1,e^2,\cdots\} \text{ is a fundamental set in } c \text{, and } \sup_\tau |\tau_{r_n}(x)| \text{ is finite for each } x \in c \text{, it follows that } \lim_{r} \tau_{r_n}(x) = \tau_n(x) \text{, exists for all } x \in c \text{ (cf [5]). Furthermore, } \|\tau_n\| \leq \liminf_{r} [\|\tau_{r_n}\| \leq \|A\| \text{ for each } n \text{ and } \tau_n \in c'. Thus, each } x \in c \text{ has a unique representation } \quad x = (\lim x) \left[e - \sum_k e_k \right] + \sum_k x_k e_k \tau_n(x) = (\lim x) \left[t_n(e) - \sum_k t_n(e_k) \right] + \sum_k x_k t_n(e_k) \tau_n(x) = (\lim x) \left[u - \sum_k u_k \right] + \sum_k x_k u_k. \text{By } L(x), \text{ we denote the right hand side of the above expression which is independent of } n. \text{ Now, we have to show that } \lim_{r} \tau_{r_n}(x) = L(x) \text{ uniformly in } n. \text{ Put } F_{r_n}(x) = \tau_{r_n}(x) - L(x). \text{Then } F_{r_n} \in c', \|F_{r_n}\| \leq 2\|A\| \text{ for all } r, n, \lim_{r} F_{r_n}(e) = 0 \text{ uniformly in } n, \text{ and } \lim_{r} F_{r_n}(e^k) = 0 \text{ uniformly in } n \text{ for each } k. \text{ Let } K \text{ be an arbitrary positive integer. Then } x = (\lim x) e + \sum_{k=1}^{K}(x_k - \lim x)e^k + \sum_{k=K+1}^{\infty}(x_k - \lim x)e^k. \text{Now applying } F_{r_n} \text{ on both sides of the above equality, we have } F_{r_n}(x) = (\lim x) F_{r_n}(e) + \sum_{k=1}^{K}(x_k - \lim x) F_{r_n}(e^k) + F_{r_n} \left(\sum_{k=K+1}^{\infty}(x_k - \lim x)e^k \right). (3.1.1) \text{Now, } \left| F_{r_n} \left(\sum_{k=K+1}^{\infty}(x_k - \lim x)e^k \right) \right| \leq 2\|A\| \sum_{k\geq K+1}|x_k - \lim x|, \text{ for all } r, n. \text{ After choosing fixed } K \text{ large enough, it is easy to see that the absolute value of each term on the right hand side of (3.1.1) can be made uniformly small for all sufficiently large } r. \text{ Therefore, } \lim_{r} F_{r_n}(x) = 0 \text{ uniformly in } n; \text{ so that } Ax \in V^\sigma_\sigma(\theta) \text{ and the matrix } A \text{ is } (\sigma, \theta)\text{-conservative.} \n
Necessity. Suppose that } A \text{ is } (\sigma, \theta)\text{-conservative. Then } Ax = (A_n(x))_{n=1}^{\infty} = \left(\sum_k a_{nk}x_k \right)_{n=1}^{\infty} \in V^\sigma_\sigma(\theta), \text{ for all } x \in c. \text{ Let } x = (x_k) = e^k. \text{ Therefore } (\sigma, \theta)\text{-lim}_n \sum_k a_{nk}e^k = (\sigma, \theta)\text{-lim}_n a_{nk} = a_{(k)}. \text{Hence } (ii) \text{ holds. Now, let } x = e. \text{ Then } (\sigma, \theta)\text{-lim}_n \sum_k a_{nk}e = (\sigma, \theta)\text{-lim}_n \sum_k a_{nk} = a, \text{ so that } (iii) \text{ must hold. Since } Ax = (A_n(x)) \in V^\sigma_\sigma(\theta) \subset c_\infty. \text{ It follows that } \sup_n |A_n(x)| < \infty.
$\infty, (A_n)$ is a sequence of bounded operators. Therefore, by Banach-Steinhaus theorem, $\sup_n |A_n| < \infty$, which implies $\sup_n \sum_k |a_{nk}| < \infty$ and hence $\|A\| = \sup_n \sum_k |a_{nk}| < \infty$, i.e. (i).

This completes the proof of the theorem.

Now, we deduce the following.

Corollary 3.2. $A = (a_{nk})$ is (σ, θ)-regular if and only if the conditions (i), (ii) with (σ, θ)-limit zero for each k, and (iii) with (σ, θ)-limit 1 of Theorem 3.1 hold.

Proof. For $x \in c$, (σ, θ)- $Ax = L(x)$, which reduces to $\lim x$, since $u = 1$ and $u_k = 0$ for each k. Hence A is (σ, θ)-regular.

Conversely, let A be (σ, θ)-regular. Then (σ, θ)- $Ae = 1 = (\sigma, \theta)$- Aa, (σ, θ)- $Ae_k = 0 = (\sigma, \theta)$- $A(a_k)$ and $\|A\|$ is finite as condition (i) of Theorem 3.1.

This completes the proof of the Corollary 3.2.

4. (σ, θ)-coercive matrices

We use the following lemma in our next theorem.

Lemma 4.1. Let $B(n) = (b_{mk}(n))$, $n = 0, 1, 2, \cdots$ be a sequence of infinite matrices such that

(i) $\|B(n)\| < H < +\infty$ for all n; and

(ii) $\lim b_{mk}(n) = 0$ for each k, uniformly in n.

Then $\lim \sum b_{mk}(n)x_k = 0$ uniformly in n for each $x \in \ell_\infty(4.1.1)$ if and only if $\lim \sum |b_{mk}(n)| = 0$ uniformly in $n.(4.1.2)$

Theorem 4.2. A matrix $A = (a_{nk})$ is (σ, θ)-coercive, i.e. $A \in (\ell_\infty, V_\sigma(\theta))$ if and only if (i) and (ii) of Theorem 3.1 hold, and

(iii) $\lim_r \sum_{k=1}^\infty \sum_{j \in I_r} a_{\sigma j(n),k} - u_k$ uniformly in n.

In this case, the (σ, θ)-limit of Ax is $\sum_k x_k u_k \forall x \in \ell_\infty$, where $u_k = (\sigma, \theta)$- a_k.

Proof. Sufficiency. Let the conditions hold. For any positive integer K $\sum_{k=1}^K |u_k| = \sum_{k=1}^K \sum_{j \in I_r} |a_{\sigma j(n),k} - h_r| \le \sum_{j \in I_r} \sum_{k=1}^K |a_{\sigma j(n),k}|$
\[
\limsup_r \sum_{j \in I_r} \sum_{k=1}^\infty |a_{\sigma j(n),k}| h_r \leq \|A\|. \text{ This shows that } \sum_{k=1}^\infty |u_k| \text{ converges, and that } \sum_{k=1}^\infty u_kx_k \text{ is defined for every } x = (x_k) \in \ell_\infty.
\]

Let \(x = (x_k) \) be any arbitrary bounded sequence. For every positive integer \(r \)
\[
\| \sum_{k=1}^\infty \left(\frac{1}{\hbar_r} \sum_{j \in I_r} a_{\sigma j(n),k} - u_k \right) x_k \| = \left\| \sum_{k=1}^\infty \sum_{j \in I_r} \frac{|a_{\sigma j(n),k} - u_k|}{\hbar_r} x_k \right\|
\leq \sup_{n} \left[\sum_{k=1}^\infty \sum_{j \in I_r} \frac{|a_{\sigma j(n),k} - u_k|}{\hbar_r} \right] \leq \|x\| \sup_{n} \sum_{k=1}^\infty \sum_{j \in I_r} |a_{\sigma j(n),k} - u_k| / \hbar_r
\]

Letting \(r \to \infty \) and using condition (iii), we get
\[
\frac{1}{\hbar_r} \sum_{k=1}^\infty \sum_{j \in I_r} a_{\sigma j(n),k} x_k \to \sum_{k=1}^\infty u_kx_k.
\]

Hence \(Ax \in V_{\sigma}(\theta) \) with \((\sigma, \theta)\)-limit \(\sum_{k=1}^\infty u_kx_k \).

Necessity. Let \(A \) be \((\sigma, \theta)\)-coercive matrix. This implies that \(A \) is \((\sigma, \theta)\)-

conservative, then we have condition (i) and (ii) from Theorem 3.1. Now we have to show that (iii) holds.

Suppose that for some \(n \), we have \(\limsup_r \sum_{k=1}^\infty \sum_{j \in I_r} |a_{\sigma j(n),k} - u_k| / \hbar_r = N > 0 \). Since \(\|A\| \) is finite, therefore \(N \) is also finite. We observe that since \(\sum_{k=1}^\infty |u_k| < +\infty \) and \(A \) is \((\sigma, \theta)\)-coercive, the matrix \(B = (b_{nk}) \), where \(b_{nk} = a_{nk} - u_k \), is also \((\sigma, \theta)\)-coercive matrix. By an argument similar to

that of Theorem 2.1 in [6], one can find \(x \in \ell_\infty \) for which \(Bx \notin V_{\sigma}(\theta) \). This contradiction implies the necessity of (iii).

Now, we use Lemma 4.1 to show that this convergence is uniform in \(n \). Let \(t_{rk}(n) = \sum_{j \in I_r} |a_{\sigma j(n),k} - u_k| / \hbar_r \) and let \(T(n) \) be the matrix \((t_{rk}(n)) \).

It is easy to see that \(\|H(n)\| \leq 2\|A\| \) for every \(n \); and from condition (ii) \(\lim t_{rk}(n) = 0 \) for each \(k \), uniformly in \(n \). For any \(x \in \ell_\infty \),

\[
\lim_{r} \sum_{j \in I_r} t_{rk}(n)x_k = (\sigma, \theta)\text{-lim} Ax - \sum_{k=1}^\infty u_kx_k
\]

and the limit exists uniformly in \(n \), since \(Ax \in V_{\sigma}(\theta) \). Moreover, this limit is zero since \(\left| \sum_{k=1}^\infty t_{rk}(n)x_k \right| \leq
\[\|x\| \sum_{k=1}^{\infty} \left| \sum_{j \in J_k} [a_{\sigma'(n), k} - u_k] \right| = h_r. \] Hence \(\lim_{r \to \infty} \sum_{k=1}^{\infty} |t_{rk}(n)| = 0 \) uniformly in \(n \); i.e. the condition (iii) holds.

This completes the proof of the theorem.

Acknowledgement: I would like to thank to the Deanship of scientific research for supporting the research project 14/2011.

References

M. Aiyub
Department of Mathematics,
University of Bahrain,
P.O. Box-32038,
Kingdom of Bahrain
e-mail : maiyub2002@yahoo.com