On Zweier I-convergent sequence spaces

Vakeel A. Khan
Khalid Ebadullah
and
Yasmeen
Aligarh Muslim University, India
Received : February 2014. Accepted : April 2014

Abstract

In this article we introduce the Zweier I-convergent sequence spaces Z^I, Z^0_I, and Z^∞_I. We prove the decomposition theorem and study topological, algebraic properties and have established some inclusion relations of these spaces.

2000 Mathematics Subject Classification : 40C05, 40J05, 46A45.

Keywords and phrases : Ideal, filter, I-convergence field, monotone, solid, Lipschitz function, Zweier Space, Statistical convergence, Banach space.
1. Introduction

Let \(\mathbb{N}, \mathbb{R} \) and \(\mathbb{C} \) be the sets of all natural, real and complex numbers respectively. We write

\[
\omega = \{ x = (x_k) : x_k \in \mathbb{R} \text{ or } \mathbb{C} \},
\]

the space of all real or complex sequences.

Let \(\ell_\infty, c \) and \(c_0 \) denote the Banach spaces of bounded, convergent and null sequences respectively normed by

\[
||x||_\infty = \sup_k |x_k|.
\]

A sequence space \(\lambda \) with linear topology is called a K-space provided each of maps \(p_i \to \mathbb{C} \) defined by \(p_i(x) = x_i \) is continuous for all \(i \in \mathbb{N} \).

A K-space \(\lambda \) is called an FK-space provided \(\lambda \) is a complete linear metric space.

An FK-space whose topology is normable is called a BK-space.

Let \(\lambda \) and \(\mu \) be two sequence spaces and \(A = (a_{nk}) \) be an infinite matrix of real or complex numbers \((a_{nk}) \), where \(n, k \in \mathbb{N} \). Then we say that \(A \) defines a matrix mapping from \(\lambda \) to \(\mu \), and we denote it by writing \(A : \lambda \to \mu \).

If for every sequence \(x = (x_k) \in \lambda \) the sequence \(Ax = \{(Ax)_n\} \), the \(A \) transform of \(x \) is in \(\mu \), where

\[
(Ax)_n = \sum_k a_{nk}x_k, \quad (n \in \mathbb{N}).
\]

By \((\lambda : \mu) \), we denote the class of matrices \(A \) such that \(A : \lambda \to \mu \). Thus, \(A \in (\lambda : \mu) \) if and only if series on the right side of (1) converges for each \(n \in \mathbb{N} \) and every \(x \in \lambda \).

The approach of constructing new sequence spaces by means of the matrix domain of a particular limitation method have recently been employed by Altay, Başar and Mursaleen [1], Başar and Altay [2], Malkowsky [13], Ng and Lee [14], and Wang [21].
Şengönül [18] defined the sequence \(y = (y_i) \) which is frequently used as the \(Z^p \) transform of the sequence \(x = (x_i) \) i.e.,

\[
y_i = px_i + (1 - p)x_{i-1}
\]

where \(x_{-1} = 0 \), \(1 < p < \infty \) and \(Z^p \) denotes the matrix \(Z^p = (z_{ik}) \) defined by

\[
z_{ik} = \begin{cases}
p, & (i = k),
1 - p, & (i - 1 = k); (i, k \in \mathbb{N}),
0, & \text{otherwise.}
\end{cases}
\]

Following Başar and Altay [2], Şengönül [18] introduced the Zweier sequence spaces \(Z \) and \(Z_0 \) as follows:

\[
Z = \{ x = (x_k) \in \omega : Z^p x \in c \}
\]

\[
Z_0 = \{ x = (x_k) \in \omega : Z^p x \in c_0 \}.
\]

Here we list below some of the results of Şengönül [18] which we will need as a reference in order to establish analogously some of the results of this article.

Theorem 1.1. The sets \(Z \) and \(Z_0 \) are linear spaces with the co-ordinate wise addition and scalar multiplication which are the BK-spaces with the norm \(||x||_Z = ||x||_{Z_0} = ||Z^p x||_c \) [See (Theorem 2.1. [18])].

Theorem 1.2. The sequence spaces \(Z \) and \(Z_0 \) are linearly isomorphic to the spaces \(c \) and \(c_0 \) respectively, i.e. \(Z \cong c \) and \(Z_0 \cong c_0 \) [See (Theorem 2.2. [18])].

Theorem 1.3. The inclusions \(Z_0 \subset Z \) strictly hold for \(p \neq 1 \). [See (Theorem 2.3. [18])].

Theorem 1.4. \(Z_0 \) is solid. [See (Theorem 2.6. [18])].

Theorem 1.5. \(Z \) is not a solid sequence space. [See (Theorem 3.6. [18])].

The concept of statistical convergence was first introduced by Fast [7] and also independently by Buck [3] and Schoenberg [17] for real and complex sequences. Further this concept was studied by Connor [4, 5], Connor,
Fridy and Kline [6] and many others. Statistical convergence is a generalization of the usual notion of convergence that parallels the usual theory of convergence. A sequence \(x = (x_k) \) is said to be statistically convergent to \(L \) if for a given \(\varepsilon > 0 \)

\[
\lim_{k} \frac{1}{k} \left| \{ i : |x_i - L| \geq \varepsilon, i \leq k \} \right| = 0.
\]

The notion of I-convergence generalizes and unifies different notions of convergence including the notion of statistical convergence. At the initial stage it was studied by Kostyrko, Šalát, Wilczyński [12]. Later on it was studied by Šalát, Tripathy, Ziman [15, 16]. Recently further it was studied by Tripathy [19, 20, 21, 22, 23, 24, 25, 26, 27], and V. A.Khan and Khalid Ebadullah [9-11].

Here we give some preliminaries about the notion of I-convergence.

Let \(X \) be a non empty set. Then a family of sets \(I \subseteq 2^X \) (denoting the power set of \(X \)) is said to be an ideal if \(I \) is additive i.e \(A,B \in I \Rightarrow A \cup B \in I \) and hereditary i.e \(A \in I, B \subseteq A \Rightarrow B \in I \).

A non-empty family of sets \(\mathcal{L}(I) \subseteq 2^X \) is said to be filter on \(X \) if and only if \(\emptyset \notin \mathcal{L}(I) \), for \(A, B \in \mathcal{L}(I) \) we have \(A \cap B \in \mathcal{L}(I) \) and for each \(A \in \mathcal{L}(I) \) and \(A \subseteq B \) implies \(B \in \mathcal{L}(I) \).

An Ideal \(I \subseteq 2^X \) is called non-trivial if \(I \neq 2^X \).
A non-trivial ideal \(I \subseteq 2^X \) is called admissible if \(\{ \{ x \} : x \in X \} \subseteq I \). A non-trivial ideal \(I \) is maximal if there cannot exist any non-trivial ideal \(J \neq I \) containing \(I \) as a subset.

For each ideal \(I \), there is a filter \(\mathcal{L}(I) \) corresponding to \(I \) i.e

\[
\mathcal{L}(I) = \{ K \subseteq N : K^c \in I \}, \hspace{1cm} \text{where} \hspace{1cm} K^c = N - K.
\]

Definition 1.6. A sequence \((x_k) \in \omega \) is said to be I-convergent to a number \(L \) if for every \(\varepsilon > 0 \)

\[
\{ k \in N : |x_k - L| \geq \varepsilon \} \in I.
\]

In this case we write \(I - \lim x_k = L \). The space \(c^I \) of all I-convergent sequences to \(L \) is given by

\[
c^I = \{ (x_k) \in \omega : \{ k \in N : |x_k - L| \geq \varepsilon \} \in I, \text{ for some } L \in C \}.
\]
Definition 1.7. A sequence \((x_k)\) is said to be I-null if \(L = 0\). In this case we write \(I \lim x_k = 0\).

Definition 1.8. A sequence \((x_k)\) is said to be I-Cauchy if for every \(\varepsilon > 0\) there exists a number \(m = m(\varepsilon)\) such that
\[
\{k \in N : |x_k - x_m| \geq \varepsilon\} \in I.
\]

Definition 1.9. A sequence \((x_k)\) is said to be I-bounded if there exists \(M > 0\) such that
\[
\{k \in N : |x_k| > M\} \in I.
\]

Example 1.10. Take for I the class \(I_f\) of all finite subsets of \(N\). Then \(I_f\) is a non-trivial admissible ideal and \(I_f\) convergence coincides with the usual convergence with respect to the metric in \(X\). (see [12]).

Definition 1.11. For \(I = I_\delta\) and \(A \subset N\) with \(\delta(A) = 0\) respectively. \(I_\delta\) is a non-trivial admissible ideal, \(I_\delta\)-convergence is said to be logarithmic statistical convergence(see[12]).

Definition 1.12. A map \(h\) defined on a domain \(D \subset X\) i.e \(h : D \subset X \rightarrow R\) is said to satisfy Lipschitz condition if
\[
|h(x) - h(y)| \leq K|x - y|,
\]
where \(K\) is known as the Lipschitz constant. The class of \(K\)-Lipschitz functions defined on \(D\) is denoted by \(h \in (D, K)(\text{see}[15,16])\).

Definition 1.13. A convergence field of I-covergence is a set
\[
F(I) = \{x = (x_k) \in l_\infty : \text{there exists } I \lim x \in R\}.
\]

The convergence field \(F(I)\) is a closed linear subspace of \(l_\infty\) with respect to the supremum norm, \(F(I) = l_\infty \cap c^I\) (See [15,16]).

Define a function \(h : F(I) \rightarrow R\) such that \(h(x) = I \lim x\), for all \(x \in F(I)\), then the function \(h : F(I) \rightarrow R\) is a Lipschitz function. (see [15, 16]).

Definition 1.14. Let \((x_k), (y_k)\) be two sequences. We say that \((x_k) = (y_k)\) for almost all \(k\) relative to \(I\) (a.a.k.r.I), if
\[
\{k \in N : x_k \neq y_k\} \in I(\text{see}[19,20]).
\]
The following Lemmas will be used for establishing some results of this article:

Lemma 1.15. Let E be a sequence space. If E is solid then E is monotone. (see [8], page 53).

Lemma 1.16. If $I \subset 2^N$ and $M \subseteq N$. If $M \notin I$, then $M \cap N \notin I$. (see [19, 20]).

2. Main Results

In this section we introduce the following classes of sequence spaces:

\[Z^I = \{ x = (x_k) \in \omega : \{ k \in N : I - \lim Z^p x = L \}, \text{ for some } L \in C \} \]

\[Z^I_0 = \{ x = (x_k) \in \omega : \{ k \in N : I - \lim Z^p x = 0 \} \} \]

\[Z^I_\infty = \{ x = (x_k) \in \omega : \{ k \in N : \sup_k |Z^p x| < \infty \} \} \]

We also denote by

\[m^I_Z = Z_\infty \cap Z^I \]

and

\[m^I_{Z_0} = Z_\infty \cap Z^I_0. \]

Throughout the article, for the sake of convenience now we will denote by

\[Z^p(x_k) = x', Z^p(y_k) = y', Z^p(z_k) = z' \text{ for } x, y, z \in \omega. \]

Theorem 2.1. The classes of sequences Z^I, Z^I_0, m^I_Z and $m^I_{Z_0}$ are linear spaces.

Proof. We shall prove the result for the space Z^I.

The proof for the other spaces will follow similarly.

Let $(x_k), (y_k) \in Z^I$ and let α, β be scalars. Then

\[I - \lim |x'_k - L_1| = 0, \text{ for some } L_1 \in C; \]
\[I - \lim \|y'_k - L_2\| = 0, \text{ for some } L_2 \in C; \]

That is for a given \(\epsilon > 0 \), we have
\[
A_1 = \{ k \in N : |x'_k - L_1| > \frac{\epsilon}{2} \} \in I,
\]
\[
A_2 = \{ k \in N : |y'_k - L_2| > \frac{\epsilon}{2} \} \in I.
\]
(2.1)

we have
\[
|(\alpha x'_k + \beta y'_k) - (\alpha L_1 + \beta L_2)| \leq |\alpha||x'_k - L_1| + |\beta||y'_k - L_2|
\]
\[
\leq |x'_k - L_1| + |y'_k - L_2|
\]

Now, by (1) and (2), \{ \{ k \in N : |(\alpha x'_k + \beta y'_k) - (\alpha L_1 + \beta L_2)| > \epsilon \} \} \subset A_1 \cup A_2.

Therefore \((\alpha x_k + \beta y_k) \in Z^I\)

Hence \(Z^I\) is a linear space.

Theorem 2.2. The spaces \(m^I_Z\) and \(m^I_{Z_0}\) are normed linear spaces, normed by
\[
\|x'_k\|_* = \sup_k |Z^p(x)|,
\]
(2.2)

where \(x'_k = Z^p(x)\).

Proof: It is clear from Theorem 2.1 that \(m^I_Z\) and \(m^I_{Z_0}\) are linear spaces.

It is easy to verify that (3) defines a norm on the spaces \(m^I_Z\) and \(m^I_{Z_0}\).

Theorem 2.3. A sequence \(x = (x_k) \in m^I_Z\) I-converges if and only if for every \(\epsilon > 0 \) there exists \(N_\epsilon \in N \) such that
\[
\{ k \in N : |x'_k - x'_{N_\epsilon}| < \epsilon \} \in m^I_Z
\]
(2.3)

Proof. Suppose that \(L = I - \lim x' \). Then
\[
B_\epsilon = \{ k \in N : |x'_k - L| < \frac{\epsilon}{2} \} \in m^I_Z \text{ for all } \epsilon > 0
\]
Fix an $N_\varepsilon \in B_\varepsilon$. Then we have
\[|x^{'}_{N_\varepsilon} - x^{'}_k| \leq |x^{'}_{N_\varepsilon} - L| + |L - x^{'}_k| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \]
which holds for all $k \in B_\varepsilon$.

Hence $\{ k \in \mathbb{N} : |x^{'}_k - x^{'}_{N_\varepsilon}| < \varepsilon \} \in m^I_\mathbb{Z}$.

Conversely, suppose that $\{ k \in \mathbb{N} : |x^{'}_k - x^{'}_{N_\varepsilon}| < \varepsilon \} \in m^I_\mathbb{Z}$.
That is $\{ k \in \mathbb{N} : |x^{'}_k - x^{'}_{N_\varepsilon}| < \varepsilon \} \in m^I_\mathbb{Z}$ for all $\varepsilon > 0$. Then the set
\[C_\varepsilon = \{ k \in \mathbb{N} : x^{'}_k \in [x^{'}_{N_\varepsilon} - \varepsilon, x^{'}_{N_\varepsilon} + \varepsilon] \} \in m^I_\mathbb{Z} \] for all $\varepsilon > 0$.

Let $J_\varepsilon = [x^{'}_{N_\varepsilon} - \varepsilon, x^{'}_{N_\varepsilon} + \varepsilon]$. If we fix an $\varepsilon > 0$ then we have $C_\varepsilon \in m^I_\mathbb{Z}$ as well as $C_{\varepsilon/2} \in m^I_\mathbb{Z}$. Hence $C_\varepsilon \cap C_{\varepsilon/2} \in m^I_\mathbb{Z}$. This implies that
\[J = J_\varepsilon \cap J_{\varepsilon/2} \neq \emptyset \]
that is
\[\{ k \in \mathbb{N} : x^{'}_k \in J \} \in m^I_\mathbb{Z} \]
that is
\[\text{diam} J \leq \text{diam} J_\varepsilon \]
where the diam of J denotes the length of interval J. In this way, by induction we get the sequence of closed intervals
\[J_\varepsilon = I_0 \supseteq I_1 \supseteq \ldots \supseteq I_k \supseteq \ldots \]
with the property that $\text{diam} I_k \leq \frac{1}{2} \text{diam} I_{k-1}$ for (k=2,3,4,...) and
\[\{ k \in \mathbb{N} : x^{'}_k \in I_k \} \in m^I_\mathbb{Z} \] for (k=1,2,3,4,...).

Then there exists a $\xi \in \cap I_k$ where $k \in \mathbb{N}$ such that $\xi^{'} = I - \lim x^{'}$, that is $L = I - \lim x^{'}$.

Theorem 2.4. Let I be an admissible ideal. Then the following are equivalent.

(a) $(x_k) \in \mathcal{Z}^I$;

(b) there exists $(y_k) \in \mathcal{Z}$ such that $x_k = y_k$, for a.a.k.r. I;
(c) there exists \((y_k) \in Z\) and \((z_k) \in Z_0^I\) such that \(x_k = y_k + z_k\) for all \(k \in \mathbb{N}\) and \(\{k \in \mathbb{N} : |y_k - L| \geq \epsilon\} \in I\);

(d) there exists a subset \(K = \{k_1 < k_2 \ldots\}\) of \(\mathbb{N}\) such that \(K \in \mathcal{L}(I)\) and \(\lim_{n \to \infty} |x_{k_n} - L| = 0\).

Proof. (a) implies (b). Let \((x_k) \in Z^I\). Then there exists \(L \in C\) such that

\[\{k \in \mathbb{N} : |x_k' - L| \geq \epsilon\} \in I\]

Let \((m_t)\) be an increasing sequence with \(m_t \in \mathbb{N}\) such that

\[\{k \leq m_t : |x_k' - L| \geq \frac{1}{t}\} \in I\].

Define a sequence \((y_k)\) by

\[y_k = x_k, \text{ for all } k \leq m_1.\]

For \(m_t < k \leq m_{t+1}, t \in \mathbb{N}\),

\[y_k = \begin{cases} x_k, & \text{if } |x_k' - L| < \epsilon^{-1}, \\ L, & \text{otherwise.} \end{cases}\]

Then \((y_k) \in Z\) and form the following inclusion

\[\{k \leq m_t : x_k \neq y_k\} \subseteq \{k \leq m_t : |x_k' - L| \geq \epsilon\} \in I.\]

We get \(x_k = y_k\), for a.a.k.r.I.

(b) implies (c). For \((x_k) \in Z^I\).

Then there exists \((y_k) \in Z\) such that \(x_k = y_k\), for a.a.k.r.I.

Let \(K = \{k \in \mathbb{N} : x_k \neq y_k\}\), then \(K \in I\).

Define a sequence \((z_k)\) by

\[z_k = \begin{cases} x_k - y_k, & \text{if } k \in K, \\ 0, & \text{otherwise.} \end{cases}\]

Then \(z_k \in Z_0^I\) and \(y_k \in Z\).
(c) implies (d). Let \(P_1 = \{ k \in \mathbb{N} : |z_k| \geq \varepsilon \} \in \mathcal{L}(I) \) and \(K = P_1^c = \{ k_1 < k_2 < k_3 < \ldots \} \in \mathcal{L}(I) \). Then we have \(\lim_{n \to \infty} |x_{k_n} - L| = 0 \).

(d) implies (a). Let \(K = \{ k_1 < k_2 < k_3 < \ldots \} \in \mathcal{L}(I) \) and \(\lim_{n \to \infty} |x_{k_n} - L| = 0 \).

Then for any \(\varepsilon > 0 \), and by Lemma, we have
\[
\{ k \in \mathbb{N} : |x'_k - L| \geq \varepsilon \} \subseteq K^c \cup \{ k \in K : |x'_k - L| \geq \varepsilon \}.
\]

Thus \((x_k) \in \mathcal{Z}^I \).

Theorem 2.5. The inclusions \(\mathcal{Z}^I_0 \subset \mathcal{Z}^I \subset \mathcal{Z}^I_\infty \) are proper.

Proof: Let \((x_k) \in \mathcal{Z}^I \). Then there exists \(L \in \mathbb{C} \) such that
\[
I - \lim |x'_k - L| = 0
\]
We have
\[
|x'_k| \leq \frac{1}{2}|x'_k - L| + \frac{1}{2}|L|
\]
Taking the supremum over \(k \) on both sides we get \((x_k) \in \mathcal{Z}^I_\infty \).

The inclusion \(\mathcal{Z}^I_0 \subset \mathcal{Z}^I \) is obvious.

Theorem 2.6. The function \(\bar{h} : m^I_Z \to \mathbb{R} \) is the Lipschitz function, where \(m^I_Z = \mathcal{Z}^I \cap \mathcal{Z}_\infty \), and hence uniformly continuous.

Proof: Let \(x, y \in m^I_Z, x \neq y \). Then the sets
\[
A_x = \{ k \in \mathbb{N} : |x'_k - \bar{h}(x')| \geq ||x' - y'||_s \} \in I,
A_y = \{ k \in \mathbb{N} : |y'_k - \bar{h}(y')| \geq ||x' - y'||_s \} \in I.
\]
Thus the sets,
\[
B_x = \{ k \in \mathbb{N} : |x'_k - \bar{h}(x')| < ||x' - y'||_s \} \in m^I_Z,
B_y = \{ k \in \mathbb{N} : |y'_k - \bar{h}(y')| < ||x' - y'||_s \} \in m^I_Z.
\]
Hence also \(B = B_x \cap B_y \in m^I_Z \), so that \(B \neq \phi \).
Now taking k in B,

$$|\bar{h}(x') - h(y')| \leq |\bar{h}(x') - x'| + |x' - y'| + |y' - h(y')| \leq 3|x' - y'|_\star.$$

Thus \bar{h} is a Lipschitz function.

For $m^I_{Z_0}$ the result can be proved similarly.

Theorem 2.7. If $x,y \in m^I_Z$, then $(x.y) \in m^I_Z$ and $\bar{h}(x.y) = \bar{h}(x)\bar{h}(y)$.

Proof: For $\varepsilon > 0$

$$B_x = \{k \in N : |x' - \bar{h}(x')| < \varepsilon\} \in m^I_Z,$$

$$B_y = \{k \in N : |y' - \bar{h}(y')| < \varepsilon\} \in m^I_Z.$$

Now,

$$|x'.y' - \bar{h}(x')h(y')| = |x'.y' - x'\bar{h}(y') + x'\bar{h}(y') - \bar{h}(x')\bar{h}(y')|$$

$$\leq |x'| |y' - \bar{h}(y')| + |\bar{h}(y')| |x' - \bar{h}(x')|$$

(2.4)

As $m^I_Z \subseteq Z_\infty$, there exists an $M \in R$ such that $|x'| < M$ and $|\bar{h}(y')| < M$.

Using eqn(5) we get

$$|x'.y' - \bar{h}(x')h(y')| \leq M\varepsilon + M\varepsilon = 2M\varepsilon$$

For all $k \in B_x \cap B_y \in m^I_Z$.

Hence $(x,y) \in m^I_Z$ and $\bar{h}(x.y) = \bar{h}(x)\bar{h}(y)$.

For $m^I_{Z_0}$ the result can be proved similarly.

Theorem 2.8. The spaces Z^I_0 and $m^I_{Z_0}$ are solid and monotone.

Proof: We prove the result for the case Z^I_0.

Let $(x_k) \in Z^I_0$. Then

$$I - \lim_k |x'_k| = 0$$

(2.5)
Let \((\alpha_k)\) be a sequence of scalars with \(|\alpha_k| \leq 1\) for all \(k \in \mathbb{N}\). Then the result follows from (6) and the following inequality

\[|\alpha_k x_k' \leq |\alpha_k||x_k' \leq |x_k'|\text{ for all } k \in \mathbb{N}.
\]

That the space \(Z^I_0\) is monotone follows from the Lemma 1.15.

For \(m^I_{Z_0}\) the result can be proved similarly.

Theorem 2.9. The spaces \(Z^I\) and \(m^I_Z\) are neither monotone nor solid, if \(I\) is neither maximal nor \(I = I_f\) in general.

Proof: Here we give a counter example.

Let \(I = I_\delta\). Consider the K-step space \(X_K\) of \(X\) defined as follows,

Let \((x_k) \in X\) and let \((y_k) \in X_K\) be such that

\[(y_k)' = \begin{cases} (x_k'), & \text{if } k \text{ is odd,} \\ 1, & \text{otherwise.} \end{cases}
\]

Consider the sequence \((x_k')\) defined by \((x_k') = k^{-1}\) for all \(k \in \mathbb{N}\).

Then \((x_k) \in Z^I\) but its K-step space preimage does not belong to \(Z^I\). Thus \(Z^I\) is not monotone. Hence \(Z^I\) is not solid.

Theorem 2.10. The spaces \(Z^I\) and \(Z^I_0\) are sequence algebras.

Proof: We prove that \(Z^I_0\) is a sequence algebra.

Let \((x_k), (y_k) \in Z^I_0\. Then

\[I - \lim |x_k'| = 0
\]

and

\[I - \lim |y_k'| = 0
\]

Then we have

\[I - \lim |(x_k', y_k')| = 0
\]

Thus \((x_k, y_k) \in Z^I_0\)
Hence \mathcal{Z}_0^I is a sequence algebra.

For the space \mathcal{Z}^I, the result can be proved similarly.

Theorem 2.11. The spaces \mathcal{Z}^I and \mathcal{Z}_0^I are not convergence free in general.

Proof: Here we give a counter example.

Let $I = I_f$. Consider the sequence (x_k^I) and (y_k^I) defined by

$$x_k^I = \frac{1}{k} \quad \text{and} \quad y_k^I = k \quad \text{for all } k \in \mathbb{N}$$

Then $(x_k) \in \mathcal{Z}^I$ and \mathcal{Z}_0^I, but $(y_k) \notin \mathcal{Z}^I$ and \mathcal{Z}_0^I.

Hence the spaces \mathcal{Z}^I and \mathcal{Z}_0^I are not convergence free.

Theorem 2.12. If I is not maximal and $I \neq I_f$, then the spaces \mathcal{Z}^I and \mathcal{Z}_0^I are not symmetric.

Proof: Let $A \in I$ be infinite.

If

$$x_k^I = \begin{cases} 1, & \text{for } k \in A, \\ 0, & \text{otherwise}. \end{cases}$$

Then by lemma 1.16. $x_k \in \mathcal{Z}_0^I \subset \mathcal{Z}^I$. Let $K \subset \mathbb{N}$ be such that $K \notin I$ and $\mathbb{N} - K \notin I$. Let $\phi : K \to A$ and $\psi : \mathbb{N} - K \to \mathbb{N} - A$ be bijections, then the map $\pi : \mathbb{N} \to \mathbb{N}$ defined by

$$\pi(k) = \begin{cases} \phi(k), & \text{for } k \in K, \\ \psi(k), & \text{otherwise}. \end{cases}$$

is a permutation on \mathbb{N}, but $x_{\pi(k)}^I \notin \mathcal{Z}^I$ and $x_{\pi(k)} \notin \mathcal{Z}_0^I$.

Hence \mathcal{Z}^I and \mathcal{Z}_0^I are not symmetric.

Theorem 2.13. The sequence spaces \mathcal{Z}^I and \mathcal{Z}_0^I are linearly isomorphic to the spaces c^I and c_0^I respectively, i.e $\mathcal{Z}^I \cong c^I$ and $\mathcal{Z}_0^I \cong c_0^I$.
Proof. We shall prove the result for the space \mathcal{Z} and c^I.

The proof for the other spaces will follow similarly.

We need to show that there exists a linear bijection between the spaces \mathcal{Z} and c^I. Define a map $T : \mathcal{Z} \rightarrow c^I$ such that $x \rightarrow x' = Tx$

$$T(x_k) = px_k + (1 - p)x_{k-1} = x'_k$$

where $x_{-1} = 0, p \neq 1, 1 < p < \infty$.

Clearly T is linear.

Further, it is trivial that $x = 0 = (0, 0, 0, \ldots)$, whenever $Tx = 0$ and hence injective.

Let $x'_k \in c^I$ and define the sequence $x = x_k$ by

$$x_k = M \sum_{i=0}^{k} (-1)^{k-i}N^{k-i}x'_i \quad (i \in \mathbb{N}),$$

where $M = \frac{1}{p}$ and $N = \frac{1-p}{p}$.

Then we have

$$\lim_{k \rightarrow \infty} px_k + (1 - p)x_{k-1}$$

$$= p \lim_{k \rightarrow \infty} M \sum_{i=0}^{k} (-1)^{k-i}N^{k-i}x'_i + (1 - p) \lim_{k \rightarrow \infty} M \sum_{i=0}^{k-1} (-1)^{k-i}N^{k-i}x'_i$$

$$= \lim_{k \rightarrow \infty} x'_k$$

which shows that $x \in \mathcal{Z}$.

Hence T is a linear bijection.

Also we have $||x||_* = ||Z^px||_c$.

Therefore,

$$||x||_* = \sup_{k \in \mathbb{N}} |px_k + (1 - p)x_{k-1}|,$$
\[\sup_{k \in \mathbb{N}} \left| pM \sum_{i=0}^{k} (-1)^{k-i} N^{k-i} x_i' + (1 - p)M \sum_{i=0}^{k-1} (-1)^{k-i} N^{k-i} x_i' \right| \]
\[= \sup_{k \in \mathbb{N}} \left| x_k' \right| = \left\| x' \right\|_{c'} \]

Hence \(Z^I \cong c' \).

Acknowledgments: The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

Vakeel A. Khan
Department of Mathematics,
Aligarh Muslim University
Aligarh-202002,
India
e-mail: vakanmaths@gmail.com

Khalid Ebadullah
Department of Applied Mathematics,
Z. H. College of Engineering and Technology,
Aligarh Muslim University ,
Aligarh-202002,
India
e-mail: khalidebadullah@gmail.com

and
Yasmeen
Department of Mathematics,
Aligarh Muslim University ,
Aligarh-202002,
India
e-mail : khany9828@gmail.com