Some geometric properties of lacunary Zweier Sequence Spaces of order α

Karan Tamang
North Eastern Regional Institute of Science and Tech., India
and
Bipan Hazarika
Rajiv Gandhi University, India
Received : July 2016. Accepted : September 2016

Abstract

In this paper we introduce a new sequence space using Zweier matrix operator and lacunary sequence of order α. Also we study some geometrical properties such as order continuous, the Fatou property and the Banach-Saks property of the new space.

Keywords and phrases : Lacunary sequence; Zweier operator; order continuous; Fatou property; Banach-Saks property

1. Introduction

Throughout the article, \(w, c, c_0 \) and \(\ell_\infty \) denotes the spaces of all, convergent, null and bounded sequences, respectively. Also, by \(\ell_1 \) and \(\ell_p \), we denote the spaces of all absolutely summable and \(p \)-absolutely summable series, respectively. Recall that a sequence \((x(i))_{i=1}^\infty \) in a Banach space \(X \) is called Schauder (or basis) of \(X \) if for each \(x \in X \) there exists a unique sequence \((a(i))_{i=1}^\infty \) of scalars such that \(x = \sum_{i=1}^\infty a(i)x(i) \), i.e. \(\lim_{n \to \infty} \sum_{i=1}^n a(i)x(i) = x \). A sequence space \(X \) with a linear topology is called a K-space if each of the projection maps \(P_i : X \to \mathbb{C} \) defined by \(P_i(x) = x(i) \) for \(x = (x(i))_{i=1}^\infty \in X \) is continuous for each natural \(i \). A Fréchet space is a complete metric linear space and the metric is generated by a F-norm and a Fréchet space which is a K-space is called an FK-space. In other words, \(X \) is an FK-space if \(X \) is a Fréchet space with continuous coordinatewise projections. All the sequence spaces mentioned above are FK-space except the space \(c_{00} \) which is the space of real sequences which have only a finite number of non-zero coordinates. An FK-space \(X \) which contains the space \(c_{00} \) is said to have the property AK if for every sequence \((x(i))_{i=1}^\infty \in X, x = \sum_{i=1}^\infty x(i)e(i) \) where \(e(i) = (0,0,...,1^{i^{th}}\text{place},0,0,...) \).

A Banach space \(X \) is said to be a Köthe sequence space if \(X \) is a subspace of \(w \) such that

(a) if \(x \in w, y \in X \) and \(|x(i)| \leq |y(i)| \) for all \(i \in \mathbb{N}, \) then \(x \in X \) and \(||x|| \leq ||y|| \)

(b) there exists an element \(x \in X \) such that \(x(i) > 0 \) for all \(i \in \mathbb{N} \).

We say that \(x \in X \) is order continuous if for any sequence \((x_n) \in X \) such that \(x_n(i) \leq |x(i)| \) for all \(i \in \mathbb{N} \) and \(x_n(i) \to 0 \) as \(n \to \infty \) we have \(||x_n|| \to 0 \) holds.

A Köthe sequence space \(X \) is said to be order continuous if all sequences in \(X \) are order continuous. It is easy to see that \(x \in X \) order continuous if and only if \(||(0,0,\ldots,0,x(n+1),x(n+2),\ldots)|| \to 0 \) as \(n \to \infty \).

A Köthe sequence space \(X \) is said to be the Fatou property if for any real sequence \(x \) and \((x_n) \) in \(X \) such that \(x_n \uparrow x \) coordinatewisely and \(\sup_n ||x_n|| < \infty \), we have that \(x \in X \) and \(||x_n|| \to ||x|| \).
A Banach space X is said to have the Banach-Saks property if every bounded sequence (x_n) in X admits a subsequence (z_n) such that the sequence $(t_k(z))$ is convergent in X with respect to the norm, where

$$t_k(z) = \frac{z_1 + z_2 + ... + z_k}{k} \text{ for all } k \in \mathbb{N}.$$

Some of works on geometric properties of sequence space can be found in [3, 4, 8, 9, 13, 16, 17, 18, 19, 20, 22, 23].

S¸engönül [24] defined the sequence $y = (y_k)$ which is frequently used as the Z^i-transformation of the sequence $x = (x_k)$ i.e.

$$y_k = ix_k + (1 - i)x_{k-1}$$

where $x_{-1} = 0, k \neq 0, 1 < k < \infty$ and Z^i denotes the matrix $Z^i = (z_{nk})$ defined by

$$z_{nk} = \begin{cases}
 i, & \text{if } n = k; \\
 1 - i, & \text{if } n - 1 = k; \\
 0, & \text{otherwise.}
\end{cases}$$

S¸engönül [24] introduced the Zweier sequence spaces Z and Z_0 as follows

$$Z = \{ x = (x_k) \in w : Z^i x \in c \}$$

and

$$Z_0 = \{ x = (x_k) \in w : Z^i x \in c_0 \}.$$

For details on Zweier sequence spaces we refer to [5, 10, 11, 12, 14, 15].

2. Lacunary Zweier sequence spaces of order α

by lacunary sequence we mean an increasing sequence $\theta = (k_r)$ of positive integers satisfying $k_0 = 0$ and $h_r := k_r - k_{r-1} \to \infty$ as $r \to \infty$. We denote the intervals, by $I_r = (k_{r-1}, k_r]$, which determines θ. Let $\alpha \in (0,1]$ be any real number and let p be a positive real number such that $1 \leq p < \infty$. Now we define the following sequence space.

$$[Z^0_{\theta}]_\infty(p) = \left\{ x \in w : \sup_r \frac{1}{h_r^p} \sum_{k \in I_r} |(Z^i x)_k|^p < \infty \right\}.$$

Special cases:
(a) For $p = 1$ we have $[Z_\theta^\alpha]_\infty(p) = [Z_\phi^\alpha]_\infty$.

(b) For $\alpha = 1$ and $p = 1$ we have $[Z_\theta^\alpha]_\infty(p) = [Z_\theta]_\infty$.

For details on sequence spaces of order α we refer to [1, 2, 6, 7].

Theorem 2.1. Let $\alpha \in (0, 1]$ and p be a positive real number such that $1 \leq p < \infty$. Then the sequence space $[Z_\theta^\alpha]_\infty(p)$ is a BK-space normed by

\[
\|x\|_\alpha = \sup_r \frac{1}{h_r^\alpha} \left(\sum_{k \in I_r} |(Z^i x)_k|^p \right)^\frac{1}{p}.
\]

Proof. Since the matrix Z^i is a triangle, we have the result by norm (2.1) and the Theorem 4.3.12 of Wilansky [25], p. 63. \square $[Z_\theta^\alpha]_\infty \subset [Z_\theta^\beta]_\infty(p)$.

Theorem 2.2. Let α and β be fixed real numbers such that $0 < \alpha \leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$. Then $[Z_\theta^\alpha]_\infty(p) \subset [Z_\phi^\beta]_\infty(p)$.

Proof. The proof of theorem follows from the following inequality. For all $r \in \mathbb{N}$ we have is straightforward, so omitted.

\[
\frac{1}{h_r^\alpha} \sum_{k \in I_r} |(Z^i x)_k|^p \leq \frac{1}{h_r^\beta} \sum_{k \in I_r} |(Z^i x)_k|^p.
\]

\square

Theorem 2.3. Let α and β be fixed real numbers such that $0 < \alpha \leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$. For two lacunary sequences $\theta = (h_r)$ and $\phi = (l_r)$ for all r, then $[Z_\theta^\alpha]_\infty(p) \subset [Z_\phi^\beta]_\infty(p)$ if and only if $\sup_r \left(\frac{h_r^\alpha}{l_r^\beta} \right) < \infty$.

Proof. Let $x = (x_k) \in [Z_\theta^\alpha]_\infty(p)$ and $\sup_r \left(\frac{h_r^\alpha}{l_r^\beta} \right) < \infty$. Then

\[
\sup_r \frac{1}{h_r^\alpha} \sum_{k \in I_r} |(Z^i x)_k|^p < \infty
\]
and there exists a positive number K such that $h^\alpha_r \leq K l^\beta_r$ and so that \(\frac{1}{l^\alpha_r} \leq \frac{K}{h^\beta_r} \) for all r. Therefore, we have

\[
\frac{1}{l^\alpha_r} \sum_{k \in I_r} |(Z^i x)_k|^p \leq \frac{K}{h^\beta_r} \sum_{k \in I_r} |(Z^i x)_k|^p.
\]

Now taking supremum over r, we get

\[
\sup_r \frac{1}{l^\alpha_r} \sum_{k \in I_r} |(Z^i x)_k|^p \leq \sup_r \frac{K}{h^\beta_r} \sum_{k \in I_r} |(Z^i x)_k|^p
\]

and hence $x \in [Z^\beta_\phi]_\infty(p)$.

Next suppose that $[Z^\beta_\theta]_\infty(p) \subset [Z^\beta_\phi]_\infty(p)$ and $\sup_r \left(\frac{h^\alpha_r}{l^\beta_r} \right) = \infty$. Then there exists an increasing sequence (r_i) of natural numbers such that $\lim_i \left(\frac{h^\alpha_{r_i}}{l^\beta_{r_i}} \right) = \infty$. Let L be a positive real number, then there exists $i_0 \in \mathbb{N}$ such that $\frac{h^\alpha_{r_i}}{l^\beta_{r_i}} > L$ for all $r_i \geq i_0$. Then $h^\alpha_{r_i} > L l^\beta_{r_i}$ and so $\frac{1}{l^\alpha_{r_i}} > \frac{L}{h^\beta_{r_i}}$. Therefore we can write

\[
\frac{1}{l^\alpha_{r_i}} \sum_{k \in I_{r_i}} |(Z^i x)_k|^p > \frac{L}{h^\beta_{r_i}} \sum_{k \in I_{r_i}} |(Z^i x)_k|^p \text{ for all } r_i \geq i_0.
\]

Now taking supremum over $r_i \geq i_0$ then we get

\[
\sup_{r_i \geq i_0} \frac{1}{l^\alpha_{r_i}} \sum_{k \in I_{r_i}} |(Z^i x)_k|^p > \sup_{r_i \geq i_0} \frac{L}{h^\beta_{r_i}} \sum_{k \in I_{r_i}} |(Z^i x)_k|^p.
\]

Since the relation (2.2) holds for all $L \in \mathbb{R}^+$ (we may take the number L sufficiently large), we have

\[
\sup_{r_i \geq i_0} \frac{1}{l^\alpha_{r_i}} \sum_{k \in I_{r_i}} |(Z^i x)_k|^p = \infty
\]

but $x = (x_k) \in [Z^\beta_\phi]_\infty(p)$ with

\[
\sup_r \left(\frac{h^\alpha_r}{l^\beta_r} \right) < \infty.
\]

Therefore $x \notin [Z^\beta_\phi]_\infty(p)$ which contradicts that $[Z^\beta_\theta]_\infty(p) \subset [Z^\beta_\phi]_\infty(p)$. Hence $\sup_{r \geq 1} \left(\frac{h^\alpha_r}{l^\beta_r} \right) < \infty$. \(\square \)
Corollary 2.4. Let α and β be fixed real numbers such that $0 < \alpha \leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$. For any two lacunary sequences $\theta = (h_r)$ and $\phi = (l_r)$ for all $r \geq 1$, then

(a) $[Z^\alpha_\theta]_\infty(p) = [Z^\beta_\phi]_\infty(p)$ if and only if $0 < \inf_r \left(\frac{h_r}{l_r} \right) < \sup_r \left(\frac{h_r}{l_r} \right) < \infty$.

(b) $[Z^\alpha_\theta]_\infty(p) = [Z^\alpha_\phi]_\infty(p)$ if and only if $0 < \inf_r \left(\frac{h_r}{l_r} \right) < \sup_r \left(\frac{h_r}{l_r} \right) < \infty$.

(c) $[Z^\alpha_\phi]_\infty(p) = [Z^\beta_\theta]_\infty(p)$ if and only if $0 < \inf_r \left(\frac{h_r}{l_r} \right) < \sup_r \left(\frac{h_r}{l_r} \right) < \infty$.

Theorem 2.5. $\ell_p \subset [Z^\alpha_\theta]_\infty(p) \subset \ell_\infty$.

Proof. The proof of the result is straightforward, so omitted. □

Theorem 2.6. If $0 < p < q$, then $[Z^\alpha_\theta]_\infty(p) \subset [Z^\alpha_\theta]_\infty(q)$.

Proof. The proof of the result is straightforward, so omitted. □

3. Some geometric properties

In this section we study some of the geometric properties like order continuous, the Fatou property and the Banach-Saks property in this new sequence space.

Theorem 3.1. The space $[Z^\alpha_\theta]_\infty(p)$ is order continuous.

Proof. We have to show that the space $[Z^\alpha_\theta]_\infty(p)$ is an AK-space. It is easy to see that $[Z^\alpha_\theta]_\infty(p)$ contains c_0 which is the space of real sequences which have only a finite number of non-zero coordinates. By using the definition of AK-properties, we have that $x = (x(i)) \in [Z^\alpha_\theta]_\infty(p)$ has a unique representation $x = \sum_{i=1}^\infty x(i)e(i)$ i.e. $\|x - x[j]\|_\alpha = \|(0, 0, \ldots, x(j), x(j + 1), \ldots)\|_\alpha \to 0$ as $j \to \infty$, which means that $[Z^\alpha_\theta]_\infty(p)$ has AK. Therefore BK-space $[Z^\alpha_\theta]_\infty(p)$ containing c_0 has AK-property, hence the space $[Z^\alpha_\theta]_\infty(p)$ is order continuous. □

Theorem 3.2. The space $[Z^\alpha_\theta]_\infty(p)$ has the Fatou property.
Some geometric properties of lacunary Zweier Sequence Spaces of ..487

Proof. Let x be a real sequence and (x_j) be any nondecreasing sequence of non-negative elements form $[Z^\alpha_\theta]_\infty(p)$ such that $x_j(i) \to x(i)$ as $j \to \infty$ coordinatewisely and $\sup_j ||x_j||_\alpha < \infty$.

Let us denote $T = \sup_j ||x_j||_\alpha$. Since the supremum is homogeneous, then we have

$$
1 \over T \sup_r \frac{1}{h_r^\alpha} \left(\sum_{k \in I_r} \left| (Z^i x_j(i))_k \right|^p \right)^{1 \over p}
$$

$$
\leq \sup_r \frac{1}{h_r^\alpha} \left(\sum_{k \in I_r} \left| (Z^i x_j(i))_k \right|^p \left| \frac{||x_n||_\alpha}{||x_n||_\alpha} \right| \right)^{1 \over p}
$$

$$
= \frac{1}{||x_n||_\alpha} ||x_n||_\alpha = 1.
$$

Also by the assumptions that (x_j) is non-decreasing and convergent to x coordinatewisely and by the Beppo-Levi theorem, we have

$$
1 \over T \lim_{j \to \infty} \sup_r \frac{1}{h_r^\alpha} \left(\sum_{k \in I_r} \left| (Z^i x_j(i))_k \right|^p \right)^{1 \over p}
$$

$$
= \sup_r \frac{1}{h_r^\alpha} \left(\sum_{k \in I_r} \left| (Z^i x(i))_k \right|^p \left| \frac{T}{T} \right| \right)^{1 \over p} \leq 1,
$$

whence

$$
||x||_\alpha \leq T = \sup_j ||x_j||_\alpha = \lim_{j \to \infty} ||x_j||_\alpha < \infty.
$$

Therefore $x \in [Z^\alpha_\theta]_\infty(p)$. On the other hand, since $0 \leq x$ for any natural number j and the sequence (x_j) is non-decreasing, we obtain that the sequence $(||x_j||_\alpha)$ is bounded form above by $||x||_\alpha$. Therefore $\lim_{j \to \infty} ||x_j||_\alpha \leq ||x||_\alpha$ which contradicts the above inequality proved already, yields that $||x||_\alpha = \lim_{j \to \infty} ||x_j||_\alpha$. □

Theorem 3.3. The space $[Z^\alpha_\theta]_\infty(p)$ has the Banach-Saks property.

Proof. The proof of the result follows from the standard technique. □
References

Some geometric properties of lacunary Zweier Sequence Spaces of...

Karan Tamang
Department of Mathematics,
North Eastern Regional Institute of Science and Technology,
Nirjuli 791109,
Arunachal Pradesh,
India
e-mail : karanthingh@gmail.com

and

Bipan Hazarika
Department of Mathematics,
Rajiv Gandhi University,
Rono Hills,
Doimukh 791112,
Arunachal Pradesh,
India
e-mail : bhrgu@yahoo.co.in