Odd vertex equitable even labeling of graphs

P. Jeyanthi
Govindammal Aditanar College for Women, India
A. Maheswari
Kamaraj College of Engineering and Technology, India
and
M. Vijayalakshmi
Dr. G. U. Pope College of Engineering, India
Received : January 2016. Accepted : May 2016

Abstract

In this paper, we introduce a new labeling called odd vertex equitable even labeling. Let G be a graph with p vertices and q edges and $A = \{1, 3, \ldots, q\}$ if q is odd or $A = \{1, 3, \ldots, q + 1\}$ if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling $f : V(G) \to A$ that induces an edge labeling $f^* : E(G) \to A$ defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $|v_f(a) - v_f(b)| \leq 1$ and the induced edge labels are $2, 4, \ldots, 2q$ where $v_f(a)$ be the number of vertices v with $f(v) = a$ for $a \in A$. A graph that admits odd vertex equitable even labeling is called odd vertex equitable even graph. We investigate the odd vertex equitable even behavior of some standard graphs.

Keywords : Mean labeling; odd mean labeling; k-equitable labeling; vertex equitable labeling; odd vertex equitable even labeling; odd vertex equitable even graph.

AMS Subject Classification : 05C78.
1. Introduction

All graphs considered here are simple, finite, connected and undirected. Let \(G(V, E) \) be a graph with \(p \) vertices and \(q \) edges. We follow the basic notations and terminologies of graph theory as in [3]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling and a detailed survey of graph labeling can be found in [2]. The concept of mean labeling was introduced in [8].

A graph \(G(V, E) \) with \(p \) vertices and \(q \) edges is called a mean graph if there is an injective function \(f \) that maps \(V(G) \) to \(\{0, 1, 2, \ldots, q\} \) such that for each edge \(uv \), labeled with \(\frac{f(u) + f(v)}{2} \) if \(f(u) + f(v) \) is even and \(\frac{f(u) + f(v) + 1}{2} \) if \(f(u) + f(v) \) is odd. Then the resulting edge labels are distinct. The concept of k-equitable labeling was introduced by Cahit [1]. Let \(G \) be a graph. A labeling \(f : V(G) \to \{0, 1, \ldots, k - 1\} \) is called \(k \)-equitable labeling if the condition \(|v_f(i) - v_f(j)| \leq 1, |e_f(i) - e_f(j)| \leq 1, i \neq j, i, j = 0, 1, \ldots, k - 1\) is satisfied, where as before the induced edge labeling is given by \(f(u, v) = |f(u) - f(v)| \) and \(v_f(x) \) and \(e_f(x), x \in \{0, 1, \ldots, k - 1\} \) is the number of vertices and edges of \(G \) respectively with label \(x \). The notion of odd mean labeling was due to Manickam and Marudai [6]. Let \(G(V, E) \) be a graph with \(p \) vertices and \(q \) edges. A graph \(G \) is said to be odd mean graph if there exists a function \(f : V(G) \to \{0, 1, 2, 3, \ldots, 2q - 1\} \) satisfying \(f \) is 1-1 and the induced map \(f^* : E(G) \to \{1, 3, 5, \ldots, 2q - 1\} \) defined by \(f^*(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases} \) is a bijection. The function \(f \) is called an odd mean labeling.

The concept of vertex equitable labeling was due to Lourdusamy and Seenivasan in [5]. Let \(G \) be a graph with \(p \) vertices and \(q \) edges and \(A = \{0, 1, 2, \ldots, \lceil \frac{q}{2} \rceil\} \). A graph \(G \) is said to be vertex equitable if there exists a vertex labeling \(f : V(G) \to A \) induces an edge labeling \(f^* \) defined by \(f^*(uv) = f(u) + f(v) \) for all edges \(uv \) such that for all \(a \) and \(b \) in \(A \), \(|v_f(a) - v_f(b)| \leq 1 \) and the induced edge labels are \(1, 2, 3, \ldots, q \), where \(v_f(a) \) be the number of vertices \(v \) with \(f(v) = a \) for \(a \in A \). The vertex labeling \(f \) is known as vertex equitable labeling. Motivated by the concepts of \(k \)-equitable labeling [1], odd mean labeling [6] and vertex equitable labeling [5] of graphs, we define a new labeling called odd vertex equitable even labeling.

Let \(G \) be a graph with \(p \) vertices and \(q \) edges and \(A = \{1, 3, \ldots, q\} \) if \(q \) is odd or \(A = \{1, 3, \ldots, q + 1\} \) if \(q \) is even. A graph \(G \) is said to admit odd
Odd vertex equitable even labeling of graphs

A graph admits odd vertex equitable even labeling if there exists a vertex labeling \(f : V(G) \to A \) that induces an edge labeling \(f^* \) defined by \(f^*(uv) = f(u) + f(v) \) for all edges \(uv \) such that for all \(a \) and \(b \) in \(A \), \(|v_f(a) - v_f(b)| \leq 1 \) and the induced edge labels are \(2, 4, \ldots, 2q \) where \(v_f(a) \) be the number of vertices \(v \) with \(f(v) = a \) for \(a \in A \). A graph that admits odd vertex equitable even labeling then \(G \) is called odd vertex equitable even graph.

We observe that \(K_{1,3} \) and \(K_3 \) are vertex equitable graphs but not odd vertex equitable even graphs. We use the following definitions in the subsequent section.

Definition 1.1. The disjoint union of two graphs \(G_1 \) and \(G_2 \) is a graph \(G_1 \cup G_2 \) with \(V(G_1 \cup G_2) = V(G_1) \cup V(G_2) \) and \(E(G_1 \cup G_2) = E(G_1) \cup E(G_2) \).

Definition 1.2. The corona \(G_1 \circ G_2 \) of the graphs \(G_1 \) and \(G_2 \) is defined as a graph obtained by taking one copy of \(G_1 \) (with \(p \) vertices) and \(p \) copies of \(G_2 \) and then joining the \(i^{th} \) vertex of \(G_1 \) to every vertex of the \(i^{th} \) copy of \(G_2 \).

Definition 1.3. [7] Let \(G \) be a graph with \(n \) vertices and \(t \) edges. A graph \(H \) is said to be a super subdivision of \(G \) if \(H \) is obtained from \(G \) by replacing every edge \(e_i \) of \(G \) by a complete bipartite graph \(K_{2,m_i} \) for some integer \(m_i, 1 \leq i \leq t \) in such a way that ends of \(e_i \) are merged with two vertices of the 2-vertices part of \(K_{2,m_i} \) after removing the edge \(e_i \) from \(G \). A super subdivision \(H \) of a graph \(G \) is said to be an arbitrary super subdivision of a graph \(G \) if every edge of \(G \) is replaced by an arbitrary \(K_{2,m} \) (\(m \) may vary for each edge arbitrarily).

Definition 1.4. [4] Let \(T \) be a tree and \(u_0 \) and \(v_0 \) be the two adjacent vertices in \(T \). Let \(u \) and \(v \) be the two pendant vertices of \(T \) such that the length of the path \(u_0-u \) is equal to the length of the path \(v_0-v \). If the edge \(u_0v_0 \) is deleted from \(T \) and \(u \) and \(v \) are joined by an edge \(uv \), then such a transformation of \(T \) is called an elementary parallel transformation (or an ept) and the edge \(u_0v_0 \) is called transformable edge. If by the sequence of epts, \(T \) can be reduced to a path, then \(T \) is called a \(T_p \)-tree (transformed tree) and such sequence regarded as a composition of mappings (epts) denoted by \(P \), is called a parallel transformation of \(T \). The path, the image of \(T \) under \(P \) is denoted as \(P(T) \). A \(T_p \)-tree and the sequence of two epts reducing it to a path are illustrated in Figure 1.
Definition 1.5. The graph $P_n@P_m$ is obtained by identifying the pendant vertex of a copy of path P_m at each vertex of the path P_n.

2. Main Results

Theorem 2.1. Any path is an odd vertex equitable even graph.

Proof. Let u_1, u_2, \ldots, u_n be the vertices of the path P_n and it has n vertices and $n - 1$ edges. Let $A = \begin{cases} 1, 3, \ldots, n - 1 & \text{if } n - 1 \text{ is odd} \\ 1, 3, \ldots, n & \text{if } n - 1 \text{ is even} \end{cases}.$

Define a vertex labeling $f : V(P_n) \rightarrow A$ as follows:

For $1 \leq i \leq n$, $f(u_i) = \begin{cases} i & \text{if } i \text{ is odd} \\ i - 1 & \text{if } i \text{ is even} \end{cases}.$

It can be verified that the induced edge labels of P_n are $2, 4, \ldots, 2n - 2$ and $|v_f(i) - v_f(j)| \leq 1$ for all $i, j \in A$. Clearly f is an odd vertex equitable even labeling of P_n. Thus P_n is an odd vertex equitable even graph. \qed

Theorem 2.2. The graph $P_n@P_m$ is an odd vertex equitable even graph for any $n, m \geq 1$.

Figure 1

a) A T_p-tree T b) An ept $P_1(T)$ c) Second ept $P_2(T)$
Proof. Let v_1, v_2, \ldots, v_n be the vertices of the path P_n. Let $v_{i1}, v_{i2}, \ldots, v_{im}$ be the vertices on the i^{th} copy of the path P_m so that v_i is identified with v_{im} for $1 \leq i \leq n$. Clearly $P_n@P_m$ has mn vertices and $mn - 1$ edges.

Let $A = \begin{cases} 1,3,\ldots,mn-1 & \text{if } mn - 1 \text{ is odd} \\ 1,3,\ldots,mn & \text{if } mn - 1 \text{ is even.} \end{cases}$

Define a vertex labeling $f : V(P_n@P_m) \rightarrow A$ as follows:

For $1 \leq i \leq n, 1 \leq j \leq m$,

If i is odd, $f(v_{ij}) = \begin{cases} m(i-1) + j & \text{if } j \text{ is odd} \\ m(i-1) + j - 1 & \text{if } j \text{ is even.} \end{cases}$

If i is even, $f(v_{ij}) = \begin{cases} mi - j & \text{if } j \text{ is odd} \\ mi - (j-1) & \text{if } j \text{ is even.} \end{cases}$

It can be verified that the induced edge labels of $P_n@P_m$ are $2, 4, \ldots, 2mn-2$ and $|f(v_i) - f(v_j)| \leq 1$ for all $i, j \in A$. Clearly f is an odd vertex equitable even labeling of $P_n@P_m$. Thus, $P_n@P_m$ is an odd vertex equitable even graph. \qed

Corollary 2.3. The graph $P_n \odot K_1$ is an odd vertex equitable even graph for any $n \geq 1$.

Theorem 2.4. The graph $K_{1,n}$ is an odd vertex equitable even graph if only if $n \leq 2$.

Proof. Suppose that $n \leq 2$. When $n = 1, K_{1,n} \cong P_2$ and $n = 2, K_{1,n} \cong P_3$. Hence by Theorem 2.1, $K_{1,n}$ is an odd vertex equitable even graph. Suppose that $n \geq 3$ and $K_{1,n}$ is an odd vertex equitable even graph with odd vertex equitable even labeling f. Let $\{V_1, V_2\}$ be the bipartition of $K_{1,n}$ with $V_1 = \{u\}$ and $V_2 = \{u_1, u_2, \ldots, u_n\}$. To get the edge label 2, we have to assign the label 1, to the two adjacent vertices. Thus 1 must be the label of u. Since $n \geq 3$, the maximum value of the edge label is either $n + 1$ or $n + 2$ according as n is odd or even. Hence, there is no edge with the induced label 2n. Thus, $K_{1,n}$ is not an odd vertex equitable even graph if $n \geq 3$. \qed

Theorem 2.5. The graph $K_{1,n} \cup K_{1,n-2}$ is an odd vertex equitable even graph for any $n \geq 3$.

Proof. Let u, v be the centre vertices of the two star graphs, $K_{1,n}, K_{1,n-2}$. Assume that u_1, u_2, \ldots, u_n be the vertices incident with u and $v_1, v_2, \ldots, v_{n-2}$ be the vertices incident with v. Hence $K_{1,n} \cup K_{1,n-2}$ has $2n + 2$ vertices and $2n - 2$ edges. Let $A = \{1,3,\ldots,2n-1\}$.
Define a vertex labeling \(f : V(K_{1,n} \cup K_{1,n-2}) \rightarrow A \) as follows:
\[
f(u) = 1, f(v) = 2n - 1, f(u_i) = 2i - 1 \text{ if } 1 \leq i \leq n \text{ and } \]
\[
f(v_i) = 2i + 1 \text{ if } 1 \leq i \leq n - 2.
\]
It can be verified that the induced edge labels of \(K_{1,n} \cup K_{1,n-2} \) are
\(2, 4, \ldots, 4n - 4 \) and \(|v_f(i) - v_f(j)| \leq 1 \) for all \(i, j \in A \). Clearly \(f \) is an odd vertex equitable even labeling of \(K_{1,n} \cup K_{1,n-2} \). Thus, \(K_{1,n} \cup K_{1,n-2} \) is an odd vertex equitable even graph.

Theorem 2.6. The graph \(K_{2,n} \) is an odd vertex equitable even graph for all \(n \).

Proof. Let \(\{V_1, V_2\} \) be the bipartition of \(K_{2,n} \) with \(V_1 = \{u, v\} \) and \(V_2 = \{u_1, u_2, \ldots, u_n\} \). It has \(n+2 \) vertices and \(2n \) edges. Let \(A = \{1, 3, \ldots, 2n + 1\} \).

Define a vertex labeling \(f : V(K_{2,n}) \rightarrow A \) as follows:
\[
f(u) = 1, f(v) = 2n + 1 \text{ and } f(u_i) = 2i - 1 \text{ if } 1 \leq i \leq n.
\]
It can be verified that the induced edge labels of \(K_{2,n} \) are \(2, 4, \ldots, 4n \) and \(|v_f(i) - v_f(j)| \leq 1 \) for all \(i, j \in A \). Clearly \(f \) is an odd vertex equitable even labeling of \(K_{2,n} \). Thus, \(K_{2,n} \) is an odd vertex equitable even graph.

Theorem 2.7. Let \(G \) be a graph with \(p \) vertices and \(q \) edges and \(p \leq \left[\frac{q}{2} \right] + 1 \) then \(G \) is not an odd vertex equitable even graph.

Proof. Let \(G \) be a graph with \(p \) vertices and \(q \) edges.

Case (i): Let \(q = 2m + 1 \).
Suppose \(G \) is an odd vertex equitable even graph. Let \(A = \{1, 3, \ldots, 2m + 1\} \). To get an edge label 2, there must be two adjacent vertices \(u \) and \(v \) with label 1. Also to get the edge label \(4m + 2 \), there must be two adjacent vertices \(x \) and \(y \) with label \(2m + 1 \). Hence, the number of vertices must be greater than or equal to \(m + 3 \). Then \(G \) is not an odd vertex equitable even graph.

Case (ii): Let \(q = 2m \).
Suppose \(G \) is an odd vertex equitable even graph. Let \(A = \{1, 3, \ldots, 2m + 1\} \). To get the edge label 2, there must be two adjacent vertices \(u \) and \(v \) each has the label 1. The number of vertices must be greater than or equal to \(m + 2 \). Then \(G \) is not an odd vertex equitable even graph. ∎
Corollary 2.8. The graph $K_{m,n}$ is not an odd vertex equitable even graph if $m, n \geq 3$.

Theorem 2.9. Every T_p-tree is an odd vertex equitable even graph.

Proof. Let T be a T_p-tree with n vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T)) = V(T)$ (ii) $E(P(T)) = (E(T) - E_d) \cup E_p$

where E_d is the set of edges deleted from T and E_p is the set of edges newly added through the sequence $P = (P_1, P_2, \ldots, P_k)$ of the epts P used to arrive the path $P(T)$. Clearly, E_d and E_p have the same number of edges.

Now denote the vertices of $P(T)$ successively as v_1, v_2, \ldots, v_n starting from one pendant vertex of $P(T)$ right up to the other.

For $1 \leq i \leq n$, define the labeling f as $f(v_i) = \begin{cases} i & \text{if } i \text{ is odd} \\ i - 1 & \text{if } i \text{ is even.} \end{cases}$

Then f is an odd vertex equitable even labeling of the path $P(T)$.

Let $v_i v_j$ be an edge in T for some indices i and j with $1 \leq i < j \leq n$. Let P_1 be the ept that delete the edge $v_i v_j$ and add an edge $v_{i+t} v_{j-t}$ where t is the distance of v_i from v_{i+t} and the distance of v_j from v_{j-t}. Let P be a parallel transformation of T that contains P_1 as one of the constituent epts.

Since $v_{i+t} v_{j-t}$ is an edge of the path $P(T)$, it follows that $i+t+1 = j-t$ which implies $j = i + 2t + 1$. Therefore i and j are of opposite parity.

The induced label of the edge $v_i v_j$ is given by $f^*(v_i v_j) = f^*(v_{i+t} v_{j-t+1}) = f(v_i) + f(v_{i+2t+1}) = 2(i+t), 1 \leq i \leq n$. Now $f^*(v_{i+t} v_{j-t}) = f^*(v_{i+t} v_{j+t+1}) = f(v_{i+t} + f(v_{i+t+1}) = 2(i + t), 1 \leq i \leq n$. Therefore, we have $f^*(v_i v_j) = f^*(v_{i+t} v_{j-t+1})$ and hence f is an odd vertex equitable even labeling of the T_p-tree T. \square

Theorem 2.10. If every edge of a graph G is an edge of a triangle, then G is not an odd vertex equitable even graph.

Proof. Let G be a graph in which every edge is an edge of a triangle. Suppose G is an odd vertex equitable even graph with odd vertex equitable even labeling f. To get 2 as an edge label, there must be two adjacent vertices u and v such that $f(u) = 1$ and $f(v) = 1$. Let $uwvw$ be a triangle. To get 4 as an edge label, there must be $f(w) = 3$, then uw and vw get the same edge label. This is contradiction to f is an odd vertex equitable even labeling. Hence G is not an odd vertex equitable even graph. \square
Corollary 2.11. The complete graph K_n where $n \geq 3$, the wheel W_n, the triangular snake, double triangular snake, triangular ladder, flower graph FL_n, fan graph $P_n + K_1$, $n \geq 2$, double fan graph $P_n + K_2$, $n \geq 2$, friendship graph C_n^3, windmill K_m^n, $m > 3$, $K_2 + mK_1$, square graph B_{2n}^2, total graph $T(P_n)$ and composition graph $P_n[P_2]$ are not odd vertex equitable even graphs.

Theorem 2.12. The cycle C_n is an odd vertex equitable even graph if $n \equiv 0 \text{ or } 1 \pmod{4}$.

Proof. Suppose $n \equiv 0$ or $1 \pmod{4}$. Let u_1, u_2, \ldots, u_n be the vertices of the cycle C_n. Let $A = \{1, 3, \ldots, n \}$ if n is odd

$$A = \{1, 3, \ldots, n + 1 \}$$ if n is even.

Define a vertex labeling $f : V(C_n) \rightarrow A$ as follows:

$$f(u_i) = i$$ if i is odd and

$$f(u_i) = \begin{cases} i - 1 & \text{if } i \text{ is even and } 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\ i + 1 & \text{if } i \text{ is even and } \left\lfloor \frac{n}{2} \right\rfloor \leq i \leq n \end{cases}$$

It can be verified that the induced edge labels of cycle are $2, 4, \ldots, 2n$ and $|v_f(i) - v_f(j)| \leq 1$ for all $i, j \in A$. Clearly f is an odd vertex equitable even labeling of cycle. Thus, the cycle C_n is an odd vertex equitable even graph if $n \equiv 0 \text{ or } 1 \pmod{4}$. \Box

Theorem 2.13. A quadrilateral snake Q_n is an odd vertex equitable even graph.

Proof. A quadrilateral snake is obtained from a path u_1, u_2, \ldots, u_n by joining u_i, u_{i+1} to the new vertices v_i, w_i respectively and joining v_i and $w_i, 1 \leq i \leq n - 1$. It has $3n - 2$ vertices and $4n - 4$ edges. Let $A = \{1, 3, \ldots, 4n - 3 \}$.

Define a vertex labeling $f : V(Q_n) \rightarrow A$ as follows:

$$f(u_i) = 4i - 3 \text{ if } 1 \leq i \leq n, f(v_i) = 4i - 3 \text{ and } f(w_i) = 4i - 1 \text{ if } 1 \leq i \leq n - 1.$$

It can be verified that the induced edge labels of quadrilateral snake are $2, 4, \ldots, 8n - 8$ and $|v_f(i) - v_f(j)| \leq 1$ for all $i, j \in A$. Clearly f is an odd vertex equitable even labeling of quadrilateral snake. Thus, quadrilateral snake is an odd vertex equitable even graph. \Box

Theorem 2.14. The ladder graph L_n is an odd vertex equitable even graph for all n.

Proof. Let \(u_i \) and \(v_i \) be the vertices of \(L_n \). Then \(E(L_n) = \{u_iu_{i+1} : 1 \leq i \leq n-1\} \cup \{u_iv_i : 1 \leq i \leq n\} \cup \{v_{i+1}v_{i+2} : 1 \leq i \leq n-1\} \). Then \(L_n \) has \(2n \) vertices and \(3n - 2 \) edges.

Let \(A = \begin{cases} 1,3,...,3n-2 & \text{if } n \text{ is odd} \\ 1,3,...,3n-1 & \text{if } n \text{ is even} \end{cases} \).

Define a vertex labeling \(f : V(L_n) \rightarrow A \) as follows:
\[
f(u_{2i-1}) = f(v_{2i-1}) = 6i - 5 \text{ if } 1 \leq i \leq \left\lceil \frac{n}{2} \right\rceil, \quad f(u_{2i}) = 6i - 1 \text{ and } \quad f(v_i) = 6i - 3 \text{ if } 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor.
\]

It can be verified that the induced edge labels of \(L_n \) are \(2,4,\ldots,6n-4 \) and \(|v_f(i) - v_f(j)| \leq 1\) for all \(i,j \in A \). Clearly \(f \) is an odd vertex equitable even labeling of \(L_n \). Thus, \(L_n \) is an odd vertex equitable even graph. \(\square \)

Theorem 2.15. The graph \(L_n \odot K_1 \) is an odd vertex equitable even graph for all \(n \).

Proof. Let \(L_n \) be the ladder. Let \(L_n \odot K_1 \) be the graph obtained by joining a pendant edge to each vertex of the ladder. Let \(u_i \) and \(v_i \) be the vertices of \(L_n \). For \(1 \leq i \leq n, u'_i \) and \(v'_i \) be the new vertices adjacent with \(u_i \) and \(v_i \) respectively. Clearly \(L_n \odot K_1 \) has \(4n \) vertices and \(5n - 2 \) edges.

Let \(A = \begin{cases} 1,3,...,5n-2 & \text{if } n \text{ is odd} \\ 1,3,...,5n-1 & \text{if } n \text{ is even} \end{cases} \).

Define a vertex labeling \(f : V(L_n \odot K_1) \rightarrow A \) as follows:
\[
\begin{align*}
&f(u_{2i-1}) = f(u'_{2i-1}) = 10i - 9, f(v_{2i-1}) = f(v'_{2i-1}) = 10i - 7. \\
&f(u_{2i}) = 10i - 1, f(v_{2i}) = 10i - 5, f(u'_{2i}) = f(v'_{2i}) = 10i - 3.
\end{align*}
\]

It can be verified that the induced edge labels of \(L_n \odot K_1 \) are \(2,4,\ldots,10n-4 \) and \(|v_f(i) - v_f(j)| \leq 1\) for all \(i,j \in A \). Clearly \(f \) is a odd vertex equitable even labeling of \(L_n \odot K_1 \). Thus, \(L_n \odot K_1 \) is an odd vertex equitable even graph. \(\square \)

Theorem 2.16. The arbitrary super subdivision of any path \(P_n \) is an odd vertex equitable even graph.

Proof. Let \(v_1, v_2, \ldots, v_n \) be the vertices and \(e_i = v_iv_{i+1} \) be the edges of the path \(P_n \) for \(1 \leq i \leq n-1 \). Let \(G \) be an arbitrary super subdivision of the path \(P_n \). That is, for \(1 \leq i \leq n-1 \) each edge \(e_i \) of the path \(P_n \) is replaced by a complete bipartite graph \(K_{2,m_i} \) where \(m_i \) is any positive integer. Let \(V(G) = \{v_i : 1 \leq i \leq n\} \cup \{u_{ij} : 1 \leq j \leq m_i, 1 \leq i \leq n-1\} \).
Clearly G has $m_1 + m_2 + \ldots + m_{n-1} + n$ vertices and $2(m_1 + m_2 + \ldots + m_{n-1})$ edges. Let $A = \{1, 3, \ldots, 2(m_1 + m_2 + \ldots + m_{n-1}) + 1\}$.

Define a vertex labeling $f : V(G) \rightarrow A$ as follows:

- $f(v_1) = 1$, $f(v_i) = 2(m_1 + m_2 + \ldots + m_i) + 1$ if $2 \leq i \leq n$,
- $f(u_{1j}) = 2j - 1$ if $1 \leq j \leq m_1$ and
- $f(u_{ij}) = f(v_i) + 2j - 2$ if $2 \leq i \leq n - 1, 1 \leq j \leq m_i$.

Therefore the induced edge labels of G are $2, 4, \ldots, 4(m_1 + m_2 + \ldots + m_{n-1})$ and $|v_f(i) - v_f(j)| \leq 1$ for all $i, j \in A$. Clearly f is an odd vertex equitable even labeling of G. Thus, arbitrary super subdivision of any path is an odd vertex equitable even graph. \(\square\)

References

P. Jeyanthi
Research Centre
Department of Mathematics
Govindammal Aditanar College for Women
Tiruchendur-628 215, Tamilnadu,
India
e-mail: jeyajeyanthi@rediffmail.com

A. Maheswari
Department of Mathematics
Kamaraj College of Engineering and Technology
Virudhunagar, Tamilnadu,
India
e-mail: bala_nithin@yahoo.co.in

and

M. Vijayalakshmi
Department of Mathematics
Dr. G. U. Pope College of Engineering
Sawyerpuram,Tamilnadu,
India
e-mail: viji_mac@rediffmail.com