A generalization of variant of Wilson's type Hilbert space valued functional equations

Hajira Dimou
University of Ibn Tofail, Morocco
and
Samir Kabbaj
University of Ibn Tofail, Morocco
Received : December 2016. Accepted : May 2017

Abstract

In the present paper we characterize, in terms of characters, multiplicative functions, the continuous solutions of some functional equations for mappings defined on a monoid and taking their values in a complex Hilbert space with the Hadamard product. In addition, we investigate a superstability result for these equations.

Keywords : D’Alembert’s functional equation, Hilbert space, Hadamard product, superstability.

2010 Mathematics Subject Classifications : Primary, 39B72, 39B82; Secondary 46E40.
1. Introduction

Let M be a monoid i.e., is a semigroup with an identify element that we denote by e and $\sigma, \tau : M \to M$ are two involutive automorphisms. That is $\sigma(xy) = \sigma(x)\sigma(y)$, $\tau(xy) = \tau(x)\tau(y)$ and $\sigma(\sigma(x)) = x$, $\tau(\tau(x)) = x$ for all $x, y \in M$. By a variant of Wilson’s functional equation on M we mean the functional equation

$$f(x\sigma(y)) + f(\tau(y)x) = 2f(x)g(y), \quad x, y \in M, \quad (1.1)$$

where $f, g : M \to \mathbb{C}$ are the unknown functions. A special case of Wilson’s functional equation is d’Alembert’s functional equation:

$$f(x\sigma(y)) + f(\tau(y)x) = 2f(x)f(y), \quad x, y \in M, \quad (1.2)$$

The solutions of equation (1.2) are known [2]. Further contextual and historical discussion on the functional equation (1.1) and (1.2) can be found, e.g., in [6.2].

The present paper studies an extension to a situation where the unknown functions f, g map a possibly non-abelian group or monoid into a complex Hilbert space H with the Hadamard product. Our considerations refer mainly to results by Rezaei [4], Zeglami [11]. It has been proved [3] that the functional equation (1.2) with $\sigma = id$ is superstable in the class of functions $f : G \to \mathbb{C}$, if every such function satisfies the inequality

$$|f(xy) + f(\tau(y)x) - 2f(x)f(y)| \leq \epsilon \text{ for all } x, y \in G,$$

where ϵ is a fixed positive real number. Then either f is a bounded function or

$$f(xy) + f(\tau(y)x) = 2f(x)f(y), \quad x, y \in G.$$

Let H be a separable Hilbert space with a orthonormal basis $\{e_n, n \in \mathbb{N}\}$. For two vectors $x, y \in H$, the Hadamard product, also known as the entrywise product on the Hilbert space H is defined by

$$x \ast y = \sum_{n=0}^{\infty} \langle x, e_n \rangle \langle y, e_n \rangle e_n, \quad x, y \in H. \quad (1.3)$$

The Cauchy-Schwarz inequality together with the Parseval identity ensure that the Hadamard multiplication is well defined. In fact,

$$\|x \ast y\| \leq \left(\sum_{n=0}^{\infty} |\langle x, e_n \rangle|^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} |\langle y, e_n \rangle|^2 \right)^{\frac{1}{2}} = \|x\| \|y\| \quad (1.4)$$
The purpose of this work is first to give a characterization, in terms of multiplicative functions, the solutions of the Hilbert space valued functional equation by Hadamard product:

\[(1.5) \quad f(x\sigma(y)) + f(\tau(y)x) = 2g(x) * f(y), \quad x, y \in M.\]

When \(f\) we determine the solutions of the functional equation

\[(1.6) \quad f(x\sigma(y)) + f(\tau(y)x) = 2f(x) * g(y), \quad x, y \in M,\]

where \(f, g : M \to H\) are the unknown functions. Second, we determine a characterization of the following d’Alembert-Hilbert-valued functional equation:

\[(1.7) \quad f(x\sigma(y)) + f(\tau(y)x) = 2f(x) * f(y), \quad x, y \in M.\]

Throughout the paper, \(\mathbb{N}, \mathbb{R}\) and \(\mathbb{C}\) stand for the sets of positive integers, real numbers and complex numbers, respectively. We let \(G\) denote a group and \(S\) denote a semigroup i.e., a set with an associative composition rule.

A function \(A : M \to \mathbb{C}\) is called additive, if it satisfies \(A(xy) = A(x) + A(y)\) for all \(x, y \in M\).

A multiplicative function on \(M\) is a map \(\chi : M \to \mathbb{C}\) such that \(\chi(xy) = \chi(x)\chi(y)\) for all \(x, y \in M\).

A monoid \(M\) is generated by its squares if for every \(x \in I_\chi\), \(x = x_1^2x_2^2\cdots x_n^2\) for some \(x_1, x_2, \cdots, x_n \in M\).

A character on a group \(G\) is a homomorphism from \(G\) into the multiplicative of non-zero complex numbers. While a non-zero multiplicative function on a group can never take the value 0, it is possible for a multiplicative function on a monoid \(M\) to take the value 0 on a proper, non-empty subset of \(M\). If \(\chi : M \to \mathbb{C}\) is multiplicative and \(\chi \neq 0\), then

\[I_\chi = \{x \in M/\chi(x) = 0\}\]

is either empty or a proper subset of \(M\). The fact that \(\chi\) is multiplicative establishes that \(I_\chi\) is a two-sided ideal in \(M\) if not empty (for us an ideal is never the empty set). It follows also that \(M \setminus I_\chi\) is a subsemigroup of \(M\).

Let \(C(M)\) denote the algebra of continuous functions from \(M\) into \(\mathbb{C}\).
2. Solutions of (1.5) and (1.6)

In this section, we solve the functional equation (1.5) by expressing its solutions in terms of multiplicative functions.

Theorem 2.1. Let \(M \) be a monoid, let \(\sigma, \tau : M \rightarrow M \) be involutive automorphisms. Assume that the functions \(f, g : M \rightarrow H \) satisfy (1.5). Then, there exists a positive integer \(N \) such that

\[
f(x) = \sum_{n=1}^{N} \langle f(x), e_n \rangle e_n \quad \text{and} \quad x \rightarrow \langle g(x), e_{N+k} \rangle \quad \text{is arbitrary}
\]

for all \(x \in M \) and \(k > 0 \). Furthermore, for every \(k \in \{1, 2, ..., N\} \), we have the following possibilities:

\[
\begin{cases}
\langle g(x), e_k \rangle = \frac{\chi_k(x) + \chi_k \circ \sigma \circ \tau(x)}{2} & \text{if } \langle g(x), e_k \rangle \text{ is an arbitrary function}, \\
\langle f(x), e_k \rangle = \alpha_k \chi_k(x) + \chi_k \circ \sigma \circ \tau(x) & \text{if } \langle f(x), e_k \rangle = 0
\end{cases}
\]

for all \(x \in M \), where \(\chi_k \) is a non-zero multiplicative function of \(M \) such that \(\chi_k \circ \sigma \circ \tau = \chi_k \circ \tau \circ \sigma \) and \(\alpha_k \in \mathbb{C} \setminus \{0\} \). If \(M \) is a topological monoid and \(f \in C(M) \), then \(\chi_k, \chi_k \circ \sigma \circ \tau \in C(M) \).

Proof. For every integer \(k \geq 0 \), consider the functions \(f_k, g_k : M \rightarrow \mathbb{C} \) defined by

\[
f_k(x) = \langle f(x), e_k \rangle \quad \text{and} \quad g_k(x) = \langle g(x), e_k \rangle \quad \text{for all } x \in M.
\]

Since \((f, g)\) satisfies (1.5), for all \(x, y \in M \), we have

\[
\sum_{k=0}^{\infty} \langle f(x \sigma(y)), e_k \rangle + \langle f(\tau(y)x), e_k \rangle \rangle e_k = \sum_{k=0}^{\infty} \langle f(x \sigma(y)) + f(\tau(y)x) \rangle \rangle e_k
\]

\[
= f(x \sigma(y)) + f(\tau(y)x)
\]

\[
= 2g(x) * f(y)
\]

\[
= 2 \sum_{k=0}^{\infty} \langle g(x), e_k \rangle \langle f \rangle,
\]

This yields for all \(k \in \mathbb{N} \),

\[
f_k(x \sigma(y)) + f_k(\tau(y)x) = 2g_k(x)f_k(y) \quad \text{for all } x, y \in M.
\]

(2.1)
If we put \(y = e \) in (2.1), we find that \(f_k(x) = f_k(e)g_k(x) \). So, if we take \(\alpha_k = f_k(e) \), equation (2.1) can be written as follows:

\[
\alpha_k g_k(x\sigma(y)) + \alpha_k g_k(\tau(y)x) = 2\alpha_k g_k(x)g_k(y) \quad \text{for all } x, y \in M.
\]

Then, either \(\alpha_k = 0 \) or \(g_k \) is a solution of equation (1.6). In view of [2, Theorem 3.2], one of the following statements holds:

(a) We have that

\[f_k = 0 \text{ and } g_k \text{ is an arbitrary function.} \]

(b) There exists a multiplicative function \(\chi_k \) such that \(g_k(x) = \chi_k(x) + \chi_k(\sigma \circ \tau(x)) \) and \(f_k(x) = \frac{\alpha_k(\chi_k(x) + \chi_k(\sigma \circ \tau(x)))}{2} \) for \(x \in M \).

If \(H \) is infinite-dimensional, then

\[
\langle g(x), e_k \rangle = g_k(x) \to 0 \text{ as } k \to +\infty
\]

for every \(x \in M \). Since \(g_k(e) = 1 \), statement (b) is not possible for infinitely many positive integers \(k \). Hence, there exists some positive integer \(N \) such that \(f_k = 0 \) for every \(k > N \). Thus, \(g_k \) is an arbitrary function for any \(k > N \), \(f \) can be represented as

\[
f(x) = \sum_{n=1}^{N} \langle f(x), e_n \rangle e_n,
\]

and the expressions of the component functions \(f_n \) and \(g_n \), \(1 \leq n \leq N \), of \(f \) and \(g \) come from statements (a) and (b) above. In the case where \(H \) is finite-dimensional, the proof is clear.

As a consequence of Theorem 2.1 we derive formulas for the solutions of d’Alembert’s Hilbert space valued functional equation (1.7).

Corollary 2.2. Let \(M \) be a monoid, let \(\sigma, \tau : M \to M \) be involutive automorphisms. Assume that the functions \(g : M \to H \) satisfy (1.7). Then, there exists a positive integer \(N \) such that

\[
f(x) = \sum_{n=1}^{N} \langle f(x), e_n \rangle e_n \quad \text{and} \quad x \to \langle g(x), e_{N+k} \rangle \text{ is arbitrary}
\]

for all \(x \in M \) and \(k > 0 \). Furthermore, for every \(k \in \{1, 2, ..., N\} \), such that

\[
g(x) = \frac{1}{2} \sum_{k=1}^{N} \epsilon_k (\chi_k(x) + \chi_k \circ \sigma \circ \tau(x)) e_k, \quad x \in M,
\]
where \(\epsilon_k = 1 \) or \(0 \) for every \(k \in \{1, 2, \ldots, N\} \), for all \(x \in M \), where \(\chi_k \) is a non-zero multiplicative function of \(M \) such that \(\chi_k \circ \sigma \circ \tau = \chi_k \circ \tau \circ \sigma \).

If \(M \) is a topological monoid and \(f \in C(M) \), then \(\chi_k, \chi_k \circ \sigma \circ \tau \in C(M) \).

Proof. The proof follows by putting \(f = g \) in Theorem 2.1. \(\square \)

Corollary 2.3. Let \(M \) be a monoid, let \(\tau : M \to M \) be involutive automorphisms. Assume that the functions \(f, g : M \to H \) satisfy

\[
f(xy) + f(\tau(y)x) = 2g(x) * f(y).
\]

Then, there exists a positive integer \(N \) such that

\[
f(x) = \sum_{n=1}^{N} \langle f(x), e_n \rangle e_n \quad \text{and} \quad x \to \langle g(x), e_{N+k} \rangle \quad \text{is arbitrary}
\]

for all \(x \in M \) and \(k > 0 \). Furthermore, for every \(k \in \{1, 2, \ldots, N\} \), we have the following possibilities:

\[
\begin{align*}
\langle g(x), e_k \rangle &= \frac{\chi_k(x) + \chi_k \circ \tau(x)}{2} & \langle g(x), e_k \rangle \text{ is an arbitrary function}, \\
\langle f(x), e_k \rangle &= \frac{\alpha_k(\chi_k(x) + \chi_k \circ \tau(x))}{2} & \langle f(x), e_k \rangle = 0
\end{align*}
\]

for all \(x \in M \), where \(\chi_k \) is a non-zero multiplicative function of \(M \) and \(\alpha_k \in \mathbb{C} \setminus \{0\} \).

If \(M \) is a topological monoid and \(f \in C(M) \), then \(\chi_k, \chi_k \circ \tau \in C(M) \).

Proof. The proof follows by putting \(\sigma = \text{id} \) in Theorem 2.1. \(\square \)

We complete this section with a result concerning Wilson Hilbert space valued functional equation (1.6).

Theorem 2.4. Let \(M \) be a monoid which is generated by its squares, let \(\sigma, \tau : M \to M \) be involutive automorphisms. Assume that the pair \(f, g : M \to \mathbb{C} \), satisfy Wilson’s Hilbert valued functional equation (1.6).

Then, there exists a positive integer \(N \) such that

\[
f(x) = \sum_{n=1}^{N} \langle f(x), e_n \rangle e_n \quad \text{and} \quad \langle g(x), e_{N+k} \rangle \quad \text{is arbitrary}
\]

for all \(x \in M \) and \(k > 0 \). Furthermore, for every \(k \in \{1, 2, \ldots, N\} \), we have the following possibilities:
(i)
\[
\begin{align*}
\langle g(x), e_k \rangle & \text{ is an arbitrary function,} \\
\langle f(x), e_k \rangle & = 0
\end{align*}
\]
where \(\chi_k : M \rightarrow \mathbb{C} \) is a non-zero multiplicative function with \(\chi_k \circ \sigma \circ \tau = \chi_k \circ \tau \circ \sigma \), and for some \(\alpha_k \in \mathbb{C}\setminus\{0\} \).

(ii) There exists a non-zero multiplicative function \(\chi_k : M \rightarrow \mathbb{C} \) with \(\chi_k \circ \sigma \circ \tau = \chi_k \circ \tau \circ \sigma \) such that
\[
g_k = \chi_k + \chi_k \circ \sigma \circ \tau.
\]
Furthermore, we have

1. If \(\chi_k \neq \chi_k \circ \sigma \circ \tau \), then
\[
f_k = \alpha_k \chi_k \circ \sigma + \beta_k \chi_k \circ \tau
\]
for some \(\alpha_k, \beta_k \in \mathbb{C} \setminus \{0\} \).

2. If \(\chi_k = \chi_k \circ \sigma \circ \tau \), then there exists a non-zero additive function \(A_k : M \setminus I_{\chi_k \circ \sigma} \rightarrow \mathbb{C} \) with \(A_k \circ \tau = -A_k \circ \sigma \) such that
\[
f_k(x) = \begin{cases}
(\alpha_k + A_k(x))\chi_k(\sigma(x)) & \text{for } x \in M \setminus I_{\chi_k \circ \sigma} \\
0 & \text{for } x \in I_{\chi_k \circ \sigma}
\end{cases}
\]
for some \(\alpha_k, \in \mathbb{C} \).

Conversely, if \(f \) and \(g \) have the forms described above, then the pair \((f, g)\) is a solution of equation (1.6). Moreover, if \(M \) is a topological monoid generated by its squares, and \(f, g \in C(M) \), then \(\chi_k, \chi_k \circ \sigma, \chi_k \circ \tau, \chi_k \circ \sigma \circ \tau \in C(M) \), while \(A_k \in C(M \setminus I_{\chi_k \circ \sigma}) \).

Proof. We proceed as in the proof of Theorem 2.1. For every integer \(k \geq 0 \), we consider the functions \(f_k, g_k : M \rightarrow \mathbb{C} \), defined by
\[
f_k(x) = \langle f(x), e_k \rangle \text{ and } g_k(x) = \langle g(x), e_k \rangle \text{ for } x \in M.
\]
Since the pair \((f, g)\) satisfies (1.6), for all \(k \in \mathbb{N} \) we have
\[
(2.2) \quad f_k(x \sigma(y)) + f_k(\tau(y)x) = 2f_k(x)g_k(y) \quad \text{for all } x, y \in M.
\]
By [6,Theorem 3.4] we infer that there are only the following cases
(a) \(f_k = 0 \) and \(g_k \) is an arbitrary function.
(b) There exists a non-zero multiplicative function $\chi_k : M \to \mathbb{C}$ such that

$$f_k = \alpha_k \chi_k \circ \sigma$$

and

$$g_k = \frac{\chi_k + \chi_k \circ \sigma \circ \tau}{2}$$

for some $\alpha_k \in \mathbb{C}\setminus\{0\}$.

(c) There exists a non-zero multiplicative function $\chi_k : M \to \mathbb{C}$ with

$$\chi_k \circ \sigma \circ \tau = \chi_k \circ \tau \circ \sigma$$

such that

$$g_k = \frac{\chi_k + \chi_k \circ \sigma \circ \tau}{2}.$$

Furthermore, we have.

(i) If $\chi_k \neq \chi_k \circ \sigma \circ \tau$, then

$$f_k = \alpha_k \chi_k \circ \sigma + \beta_k \chi_k \circ \tau$$

for some $\alpha_k, \beta_k \in \mathbb{C}\setminus\{0\}$.

(ii) If $\chi_k = \chi_k \circ \sigma \circ \tau$, then there exists a non-zero additive function $A_k : M \setminus I_{\chi_k \circ \sigma} \to \mathbb{C}$ with $A_k \circ \tau = -A_k \circ \sigma$ such that

$$f_k(x) = \begin{cases} (\alpha_k + A_k(x))\chi_k(\sigma(x)) & \text{for } x \in M \setminus I_{\chi_k \circ \sigma} \\ 0 & \text{for } x \in I_{\chi_k \circ \sigma} \end{cases}$$

for some $\alpha_k \in \mathbb{C}$. Conversely, the functions given with properties satisfy the functional equation (2.2). The continuation of the proof depends on the dimension of H. In fact, if H is infinite-dimensional, then

$$\langle g(x), e_k \rangle = g_k(x) \to 0 \text{ as } k \to +\infty$$

for every $x \in M$. Statements (b) and (c) are not possible for infinitely positive integers n. Hence, there exists some positive integer N such that $f_k = 0$ for every $k > N$. Thus, f can be represented as

$$f(x) = \sum_{n=1}^{N} \langle f(x), e_n \rangle e_n,$$

g_k is an arbitrary function for any $k > N$, and expressions of the component functions f_n and g_n, $1 \leq n \leq N$ of f and g follow from the previous discussion. In the case where H is a finite-dimensional space, the proof is clear. \qed
Corollary 2.5. Let M be a monoid which is generated by its squares, let $	au : M \rightarrow M$ be an involutive automorphism, and let the pair $f, g : M \rightarrow H$ satisfy the functional equation

$$f(xy) + f(\tau(y)x) = 2f(x) * g(y), \quad x, y \in M.$$

Then, there exists a positive integer N such that

$$f(x) = \sum_{n=1}^{N} \langle f(x), e_n \rangle e_n \quad \text{and} \quad x \rightarrow \langle g(x), e_{N+k} \rangle \text{ is arbitrary}$$

for all $x \in M$ and $k > 0$. Furthermore, for every $k \in \{1, 2, ..., N\}$, we have the following possibilities:

(i) \(\begin{align*}
\langle g(x), e_k \rangle \text{ is an arbitrary function}, \\
\langle f(x), e_k \rangle = 0
\end{align*} \)

(ii) There exists a non-zero multiplicative function $\chi_k : M \rightarrow \mathbb{C}$ such that

$$g_k = \frac{\chi_k + \chi_k \circ \tau}{2}.$$

Furthermore, we have.

(1) If $\chi_k \neq \chi_k \circ \tau$, then

$$f_k = \alpha_k \chi_k + \beta_k \chi_k \circ \tau,$$

for some $\alpha_k, \beta_k \in \mathbb{C} \setminus \{0\}$.

(2) If $\chi_k = \chi_k \circ \tau$, then there exists an additive function $A_k : M \setminus I_{\chi_k} \rightarrow \mathbb{C}$ with $A_k \circ \tau = -A_k$ such that

$$f_k(x) = \begin{cases}
(\alpha_k + A_k(x))\chi_k(x) & \text{for } x \in M \setminus I_{\chi_k} \\
0 & \text{for } x \in I_{\chi_k}
\end{cases}$$

for some $\alpha_k \in \mathbb{C}$.

Conversely, if f and g have the forms described above, then the pair (f, g) is a solution. Moreover, if M is a topological monoid generated by its squares, and $f, g \in C(M)$, then $\chi_k, \chi_k \circ \tau \in C(M)$, while $A_k \in C(M \setminus I_{\chi_k})$.

Proof. The proof follows by putting $\sigma = id$ in Theorem 2.4. \(\square\)
3. Superstability of Hilbert valued cosine type functional equations

The main result of this section is Theorem 3.3 that contains a superstability result for the functional equation (1.6). For the proof of our result we will begin by pointing out a superstability result for the equation

\[(3.1) \quad f(xy) + f(\sigma(y)x) = 2f(x)g(y)\]

where \(f, g : G \to \mathbb{C}\) are the unknown functions.

Proposition 3.1. Let \(\delta > 0\) be given, let \(M\) be a monoid and let \(\sigma\) is an involutive morphism of \(M\). Assume that the functions \(f, g : M \to \mathbb{C}\) satisfies the inequality

\[|f(xy) + f(\sigma(y)x) - 2f(x)g(y)| \leq \delta\text{ for all } x, y \in M,\]

and that \(g\) is unbounded. Then, the ordered pair \((f, g)\) satisfies equation (3.1).

Proof. The proof is part of the proof of [3, Theorem 2.1 and Theorem 3.7] if we put \(\chi = 1\) that deals with \(M\) being a group. \(\square\)

Corollary 3.2. Let \(\delta > 0\) be given and let \(G\) be a monoid. Assume that the function \(f : G \to \mathbb{C}\) satisfies the inequality

\[|f(xy) + f(\sigma(y)x) - 2f(x)f(y)| \leq \delta\text{ for all } x, y \in G.\]

Then, either

\[|f(x)| \leq \frac{1 + \sqrt{1 + 2\delta}}{2}\text{ for all } x \in G,\]

or \(f\) has the form

\[f = \frac{\mu + \mu \circ \sigma}{2},\]

where \(\mu\) is a multiplicative function.

Proof. The proof follows immediately from Proposition 3.1 and Theorem [1, Theorem 4]. \(\square\)
Theorem 3.3. Let $\delta > 0$ be given and let M be a monoid. Assume that the functions $f, g : M \to H$ satisfy the inequality

$$
||f(xy) + f(\sigma(y)x) - 2f(x) * g(y)|| \leq \delta \text{ for all } x, y \in M.
$$

(3.2)

Then, either

(i) there exists $k \geq 1$ such that the function $x \mapsto \langle g(x), e_k \rangle$ is bounded, or

(ii) the pair (f, g) is a solution of the functional equation:

$$
f(xy) + f(\sigma(y)x) = 2f(x) * g(y).
$$

(3.3)

Proof. Suppose that the pair (f, g) satisfies (3.2). By applying the Parseval identity and the definition of Hadamard product with the inequality (3.2), we find that the scalar valued functions f_k, g_k defined by

$$
f_k(x) = \langle f(x), e_k \rangle \text{ and } g_k(x) = \langle g(x), e_k \rangle \text{ for } x \in M,
$$

satisfy the inequality

$$
|f_k(xy) + f_k(\sigma(y)x) - 2f_k(x)g_k(y)| \leq \delta \text{ for all } x, y \in M.
$$

According to Proposition 3.1, for all $k \in \mathbb{N}$, we have that either the function $x \mapsto \langle g(x), e_k \rangle$ is bounded or the pair (f_k, g_k) is a solution of (3.1). Then, we conclude that the pair (f, g) satisfies equation (3.3) if assertion (i) fails. □

In [4] it was proved that if $g : H \to H$ is surjective, then every component function $x \mapsto \langle g(x), e_n \rangle$ is unbounded. By applying Theorem (3.3), this leads to the following result.

Corollary 3.4. Let $\delta > 0$ be given. Assume that functions $f, g : H \to H$, where g is surjective, satisfy the inequality

$$
||f(xy) + f(\sigma(y)x) - 2f(x) * g(y)|| \leq \delta \text{ for all } x, y \in H.
$$

Then, the pair (f, g) satisfies the equation

$$
f(xy) + f(\sigma(y)x) = 2f(x) * g(y) \text{ for all } x, y \in H.
$$
Proof. Since \(g \) is surjective, then every component function \(x \mapsto \langle g(x), e_n \rangle \) is unbounded. Thus, the proof follows immediately from Theorem 3.3. \(\square \)

Corollary 3.5. Let \(\delta > 0 \) be given and let \(G \) be a topological group. Assume that the function \(g : G \to H \) satisfies the inequality
\[
||g(xy) + g(\sigma(y)x) - 2g(x) * g(y)|| \leq \delta \text{ for all } x, y \in G.
\]

Then, either there exists \(k \geq 1 \) such that
\[
||\langle g(x), e_k \rangle|| \leq \frac{1 + \sqrt{1 + 2\delta}}{2} \text{ for all } x \in G
\]
or there exist a multiplicative function \(\chi_k : M \to C \{0\} \) and a positive integer \(N \) such that
\[
g(x) = \frac{1}{2} \sum_{n=1}^{N} \epsilon_n (\chi_k(x) + \chi_k \circ \sigma(x)) e_n, \text{ for all } x \in G,
\]
where \(\epsilon_n = 1 \) or 0 for every \(n \in \{1, 2, \ldots, N\} \).

Proof. If we put \(f = g \) in Theorem 3.3, we immediately have that either there exists \(k \geq 1 \) such that the function \(x \mapsto \langle g(x), e_k \rangle \) is bounded or \(g \) is a solution of the equation
\[
g(xy) + g(\sigma(y)x) = 2g(x) * g(y), \quad x, y \in G.
\]

The remainder of the proof follows if we put \(\chi = 1 \) from Corollary [3, Corollary 3.8] and Corollary 2.3. \(\square \)

Corollary 3.6. Let \(\delta > 0 \) be given and let \(G \) be a group with identity element. Let \(g : G \to H \) such that
\[
||g(xy) + g(yx) - 2g(x) * g(y)|| \leq \delta \text{ for all } x, y \in G.
\]

Then either \(g \) is bounded or \(g \) is multiplicative.

Proof. From Corollary 2.2 and Corollary 2.5 and then using [3, Corollary 3.9]. \(\square \)
References

Hajira Dimou
Department of Mathematics,
Faculty of Sciences
Ibn Tofail University,
Kenitra,
Morocco
e-mail: dimouhajira@gmail.com

and

Samir Kabbaj
Department of Mathematics,
Faculty of Sciences
Ibn Tofail University,
Kenitra,
Morocco
e-mail: samkabbaj@yahoo.fr