On the graded classical prime spectrum of a graded module

Khaldoun Al-Zoubi
Jordan University of Science and Technology, Jordan
and
Malik Jaradat
Jordan University of Science and Technology, Jordan
Received : October 2017. Accepted : March 2018

Abstract

Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper, we introduce and study a new topology on $\text{Cl.Spec}_{g}(M)$, the collection of all graded classical prime submodules of M, called the Zariski-like topology. Then we investigate the relationship between algebraic properties of M and topological properties of $\text{Cl.Spec}_{g}(M)$. Moreover, we study $\text{Cl.Spec}_{g}(M)$ from point of view of spectral space.

Keywords : Graded classical prime submodule, graded classical prime spectrum, Zariski topology.
1. Introduction and Preliminaries

Before we state some results, let us introduce some notations and terminologies. Let G be a group with identity e and R be a commutative ring with identity 1_R. Then R is a G-graded ring if there exist additive subgroups R_g of R such that $R = \bigoplus_{g \in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g,h \in G$. We denote this by (R,G) (see [8]). The elements of R_g are called homogeneous of degree g where the R_g’s are additive subgroups of R indexed by the elements $g \in G$. If $x \in R$, then x can be written uniquely as $\sum_{g \in G} x_g$, where x_g is the component of x in R_g. Moreover, $h(R) = \bigcup_{g \in G} R_g$. Let I be an ideal of R. Then I is called a graded ideal of (R,G) if $I = \bigoplus_{g \in G} (I \cap R_g)$. Thus, if $x \in I$, then $x = \sum_{g \in G} x_g$ with $x_g \in I$. An ideal of a G-graded ring need not be G-graded (see [8].)

Let R be a G-graded ring and M an R-module. We say that M is a G-graded R-module (or graded R-module) if there exists a family of subgroups $\{M_g\}_{g \in G}$ of M such that $M = g \in G \bigoplus M_g$ (as abelian groups) and $R_g M_h \subseteq M_{gh}$ for all $g,h \in G$. Here, $R_g M_h$ denotes the additive subgroup of M consisting of all finite sums of elements $r_g s_h$ with $r_g \in R_g$ and $s_h \in M_h$. Also, we write $h(M) = g \in G \bigcup M_g$ and the elements of $h(M)$ are called homogeneous elements of M. Let $M = g \in G \bigoplus M_g$ be a graded R-module and N a submodule of M. Then N is called a graded submodule of M if $N = g \in G \bigoplus N_g$ where $N_g = N \cap M_g$ for $g \in G$. In this case, N_g is called the g-component of N (see [8].)

Let R be a G-graded ring and M a graded R-module. A proper graded ideal I of R is said to be a graded prime ideal if whenever $rs \in I$, we have $r \in I$ or $s \in I$, where $r,s \in h(R)$. The graded radical of I, denoted by $Gr(I)$, is the set of all $x \in R$ such that for each $g \in G$ there exists $n_g > 0$ with $x^{n_g} \in I$. Note that, if r is a homogeneous element, then $r \in Gr(I)$ if and only if $r^n \in I$ for some $n \in N$. Let $Spec_g(R)$ denote the set of all graded prime ideals of R (see [11].)

A proper graded submodule N of M is said to be a graded prime submodule if whenever $r \in h(R)$ and $m \in h(M)$ with $rm \in N$, then either $r \in (N:_R M) = \{ r \in R : rM \subseteq N \}$ or $m \in N$ (see [2].) It is shown in [2, Proposition 2.7] that if N is a graded prime submodule of M, then $P := (N:_R M)$ is a graded prime ideal of R, and N is called graded P-prime submodule. Let $Spec_g(M)$ denote the set of all graded prime submodules of M. Note that some graded R-modules M have no graded prime submodules. We call such graded modules g-primeless. The graded radical of a graded submodule N of M, denoted by $Gr_M(N)$, is defined to be the
intersection of all graded prime submodules of M containing N. If N is not contained in any graded prime submodule of M, then $\text{Gr}_M(N) = M$ (see [2, 9].)

A proper graded submodule N of M is called a graded classical prime submodule if whenever $r, s \in h(R)$ and $m \in h(M)$ with $rsm \in N$, then either $rm \in N$ or $sm \in N$ (see [1, 4].) Of course, every graded prime submodule is a graded classical prime submodule, but the converse is not true in general (see [1], Example 2.3.) Let $\text{Cl.Spec}_g(M)$ denote the set of all graded classical prime submodules of M. Obviously, some graded R-modules M have no graded classical prime submodules; such modules are called g-Cl.primeless. The graded classical radical of a graded submodule N of a graded R-module M, denoted by $\text{Gr}_M^c(N)$, is defined to be the intersection of all graded classical prime submodules of M containing N. If N is not contained in any graded classical prime submodule of M, then $\text{Gr}_M^c(N) = M$ (see [4].) We know that $\text{Spec}_g(M) \subseteq \text{Cl.Spec}_g(M)$. As it is mentioned in ([1], Example 2.3), it happens sometimes that this containment is strict. We call M a graded compatible R-module if its graded classical prime submodules and graded prime submodules coincide, that is if $\text{Spec}_g(M) = \text{Cl.Spec}_g(M)$. If R is a G-graded ring, then every graded classical prime ideal of R is a graded prime ideal. So, if we consider R as a graded R-module, it is graded compatible.

Let R be a G-graded ring and M a graded R-module. For each graded ideal I of R, the graded variety of I is the set $V^g_R(I) = \{ P \in \text{Spec}_g(R) | I \subseteq P \}$. Then the set $\{ V^g_R(I) | I \text{ is a graded ideal of } R \}$ satisfies the axioms for the closed sets of a topology on $\text{Spec}_g(R)$, called the Zariski topology on $\text{Spec}_g(R)$ (see [7, 10].)

In [3], $\text{Spec}_g(M)$ has endowed with quasi-Zariski topology. For each graded submodule N of M, let $V^g(N) = \{ P \in \text{Spec}_g(M) | N \subseteq P \}$. In this case, the set $\zeta^g(M) = \{ V^g(N) | N \text{ is a graded submodule of } M \}$ contains the empty set and $\text{Spec}_g(M)$, and it is closed under arbitrary intersections, but it is not necessarily closed under finite unions. The graded R-module M is said to be a g-Top module if $\zeta^g(M)$ is closed under finite unions. In this case $\zeta^g(M)$ satisfies the axioms for the closed sets of a unique topology τ^g on $\text{Spec}_g(M)$. The topology $\tau^g(M)$ on $\text{Spec}_g(M)$ is called the quasi-Zariski topology.

In [4], $\text{Cl.Spec}_g(M)$ has endowed with quasi-Zariski topology. For each graded submodule N of M, let $V^g(N) = \{ C \in \text{Cl.Spec}_g(M) | N \subseteq C \}$. In this case, the set $\eta^g(M) = \{ V^g(N) | N \text{ is a graded submodule of } M \}$ contains the empty set and $\text{Cl.Spec}_g(M)$, and it is closed under arbitrary
intersections, but it is not necessarily closed under finite unions. The graded
R-module M is said to be a g-Cl. Top module module if $\eta^g(M)$ is closed
under finite unions. In this case $\eta^g(M)$ satisfies the axioms for the closed
sets of a unique topology g^a on $\text{Cl.Spec}_g(M)$. In this case, the topology
$g^a(M)$ on $\text{Cl.Spec}_g(M)$ is called the quasi-Zariski topology.

In this article, we introduce and study a new topology on $\text{Cl.Spec}_g(M)$,
called the Zariski-like topology, which generalizes the Zariski topology of
graded rings to graded modules. Let R be a G-graded ring and M a
graded R-module. For each graded submodule N of M, we define
$U_g^a(N) = \text{Cl.Spec}_g(M) - V^a_g(N)$ and put $B^{cl}(M) = \{U^a_g(N) : N$ is a graded submodule of $M\}$. Then we define $\tau^{cl}_g(M)$ to be the topology on $\text{Cl.Spec}_g(M)$ by
the sub-basis $B^{cl}(M)$. In fact $\tau^{cl}_g(M)$ to be the collection U of all unions of
finite intersections of elements of $B^{cl}(M)$. We call this topology the Zariski-
like topology of M.

If N is a graded submodule (respectively proper submodule) of a graded
module M we write $N \leq_g M$ (respectively $N_g M$).

2. Topology on $\text{Cl.Spec}_g(M)$

Let R be a G-graded ring and M a graded R-module. A graded submodule
C of M will be called a graded maximal classical prime if C is a graded
classical prime submodule of M and there is no graded classical prime
submodule P of M such that $C \subseteq P$. Let $\text{Cl.Spec}_g(M)$ be endowed with
the Zariski-like topology. For each subset Y of $\text{Cl.Spec}_g(M)$, We will denote
the closure of Y in $\text{Cl.Spec}_g(M)$ by $\text{cl}(Y)$.

Lemma 2.1. Let R be a G-graded ring and M a graded R-module.

i) If Y is a nonempty subset of $\text{Cl.Spec}_g(M)$, then $\text{cl}(Y) = \bigcup_{C \in Y} V^a_g(C)$.

ii) If Y is a closed subset of $\text{Cl.Spec}_g(M)$, then $Y = \bigcup_{C \in Y} V^a_g(C)$.

Proof.

i) Clearly, $\text{cl}(Y) \subseteq \bigcup_{C \in Y} V^a_g(C)$. Let S be a closed subset of $\text{Cl.Spec}_g(M)$
containing Y. Thus, $S = \bigcap_{i \in I} (\bigcup_{j=1}^{n_i} V^a_g(N_{ij}))$, for some $N_{ij} \leq_g M$,
i $i \in I$ and $n_i \in \mathbb{N}$. Let $P \in \bigcup_{C \in Y} V^a_g(C)$. Then, there exists $C_0 \in Y$
such that $P \in \mathbf{V}^{g}_{s}(C_{0})$ and so $C_{0} \subseteq P$. Since $C_{0} \in S$, then for each
$i \in I$ there exists j, $1 \leq j \leq n$, such that $N_{ij} \subseteq C_{0}$, and hence
$N_{ij} \subseteq C_{0} \subseteq P$. It follows that $P \in S$. Therefore, $\bigcup_{C \in Y} \mathbf{V}^{g}_{s}(C) \subseteq S.$

ii) Clearly $Y \subseteq \bigcup_{C \in Y} \mathbf{V}^{g}_{s}(C)$. For each $C \in Y$ we have
$\mathbf{V}^{g}_{s}(C) = cl(\{C\}) \subseteq cl(Y) = Y$ by part(i). Hence $\bigcup_{C \in Y} \mathbf{V}^{g}_{s}(C) \subseteq Y$. Therefore, $Y = \bigcup_{C \in Y} \mathbf{V}^{g}_{s}(C)$.

Now the above lemma immediately yields the following result.

Corollary 2.2. Let R be a G-graded ring and M a graded R-module. Then.

1. $cl(\{C\}) = \mathbf{V}^{g}_{s}(C)$, for all $C \in Cl.Spec_{g}(M)$.

2. $Q \in cl(\{C\})$ if and only if $C \subseteq Q$ if and only if $\mathbf{V}^{g}_{s}(Q) \subseteq \mathbf{V}^{g}_{s}(C)$.

3. The set $\{C\}$ is a closed in $Cl.Spec_{g}(M)$ if and only if C is a graded
maximal classical prime submodule of M.

The following theorem shows that for any graded R-module M, $Cl.Spec_{g}(M)$
is always a T_{0}-space.

Theorem 2.3. Let R be a G-graded ring and M a graded R-module. Then, $Cl.Spec_{g}(M)$
is a T_{0}-space.

Proof. Let $C_{1}, C_{2} \in Cl.Spec_{g}(M)$. By Corollary 2.2, $cl(\{C_{1}\}) = cl(\{C_{2}\})$ if and only if $\mathbf{V}^{g}_{s}(C_{1}) = \mathbf{V}^{g}_{s}(C_{2})$ if and only if $C_{1} = C_{2}$.

Now, by the fact that a topological space is a T_{0}-space if and only if
the closures of distinct points are distinct, we conclude that for any graded
R-module M, $Cl.Spec_{g}(M)$ is a T_{0}-space. □

Let R be a G-graded ring and M a graded R-module. Let every graded
classical prime submodule of M is contained in a graded maximal classical prime submodule. We define, by transfinite induction, sets X_{α} of graded
classical prime submodule of M. To start, let X_{-1} be the empty set. Next, consider an ordinal $\alpha \geq 0$; if X_{β} has been defined for all ordinals $\beta < \alpha$, then let X_{α} be the set of those graded classical prime submodules C in M such
that all graded classical prime submodules proper containing C belong to $\cup_{\beta<\alpha} X_\beta$. In particular, X_0 is the set of graded maximal classical prime submodules of M. If some X_γ contains all graded classical prime submodules of M, then we say that $dim^{cl}_g(M)$ exists, and we set $dim^{cl}_g(M)$ -the graded classical dimension of M to be to the smallest such γ. We write $dim^{cl}_g(M) = \gamma$ as an abbreviation for the statement that $dim^{cl}_g(M)$ exists and equal γ. In fact, if $dim^{cl}_g(M) = \gamma < \infty$, then $dim^{cl}_g(M) = sup\{ht(C)\}C$ is graded classical prime submodule of $M\}$. Where $ht(C)$ is the greatest non-negative integer n such that there exists a chain of graded classical prime submodules of M, $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_n = C$, and $ht(C) = \infty$ if no such n exists.

Let X be a topological space and let x_1 and x_2 be two points in X. We say that x_1 and x_2 can be separated if each lies in an open set which does not contain the other point. X is a T_1-space if any two distinct points in X can be separated. A topological space X is a T_1-space if and only if all points of X are closed in X, (see [6].)

Theorem 2.4. Let R be a G-graded ring and M a graded R-module. Then $Cl.Spec_g(M)$ is T_1-space if and only if $dim^{cl}_g(M) \leq 0$.

Proof. First assume that $Cl.Spec_g(M)$ is a T_1-space. If $Cl.Spec_g(M) = \phi$, then $dim^{cl}_g(M) = -1$. Also, if $Cl.Spec_g(M)$ has one element, clearly $dim^{cl}_g(M) = 0$. So we can assume that $Cl.Spec_g(M)$ has more than two elements. We show that every graded classical prime submodules of M is a graded maximal classical prime submodule. To show this, let $C_1 \subseteq C_2$, where $C_1, C_2 \in Cl.Spec_g(M)$. Since $\{C_1\}$ is a closed set, $\{C_1\} = \bigcap_{i \in I} V^g_\gamma(N_{ij}))$, Where $N_{ij} \subseteq M$ and I is an index set. So for each $i \in I$, $C_1 \in \bigcup_{i \in I} V^g_\gamma(N_{ij})$ so that there exists $1 \leq t_i \leq n_i$ such that $C_1 \in V^g_\gamma(N_{it})$. Since $C_1 \subseteq C_2$, $C_2 \in V^g_\gamma(N_{it})$ for all $i \in I$. This implies that $C_2 \in \bigcup_{i \in I} V^g_\gamma(N_{ij})$, for all $i \in I$. Therefore, $C_2 \in \bigcap_{i \in I} (\bigcup_{i \in I} V^g_\gamma(N_{ij})) \{C_1\}$ as desired.

Conversely, suppose that $dim^{cl}_g(M) \leq 0$. If $dim^{cl}_g(M) = -1$, then $Cl.Spec_g(M) = \phi$, and hence it is a T_1-space. Now let $dim^{cl}_g(M) = 0$. Then $Cl.Spec_g(M) \neq \phi$ and for every graded classical prime submodule of
As a consequence, in the co
sets, or the whole of
Cl.Spec
φ
U
a neighborhood
U
(Proof.

The cofinite topology is a topology which can be defined on every set
X. It has precisely the empty set and all cofinite subsets of X as open sets.
As a consequence, in the cofinite topology, the only closed subset are finite
sets, or the whole of X (see [6].)

Now we give a characterization for a graded module M for which Cl.Spec\(_g\)(M)
is the cofinite topology.

Theorem 2.5. Let R be a G-graded ring and M a graded R-module. Then
the following statements are equivalent :

i) Cl.Spec\(_g\)(M) is the cofinite topology.

ii) dim\(_\text{cl}\)(M) \leq 0 and for every graded submodule N of M
either \(V^g_*(N) = \text{Cl.Spec}_g(M)\) or \(V^g_*(N)\) is finite.

Proof. (i) \(\Rightarrow\) (ii). Assume that Cl.Spec\(_g\)(M) is the cofinite topol-
gy. Since every cofinite topology satisfies the T\(_1\) axiom, by Theorem
2.4, \(\text{dim}_{\text{cl}}(M) \leq 0\). Now assume that there exists a graded submodule
N of M such that \(|V^g_*(N)| = \infty\) and \(V^g_*(N) \neq \text{Cl.Spec}_g(M)\). Then
\(U^g_*(N) = \text{Cl.Spec}_g(M) - V^g_*(N)\) is an open set in \(\text{Cl.Spec}_g(M)\) with infinite
complement, a contradiction. (ii) \(\Rightarrow\) (i). Suppose that \(\text{dim}_{\text{cl}}(M) \leq 0\) and
for every graded submodule N of M, \(V^g_*(N) = \text{Cl.Spec}_g(M)\) or \(V^g_*(N)\) is finite. Thus every finite union \(\bigcup_{j=1}^n V^g_*(N_j)\) of graded submodules \(N_j \leq g\) M is also finite or \(\text{Cl.Spec}_g(M)\). Hence any intersection of finite
union \(\bigcap_{i \in I} \bigcup_{j=1}^n V^g_*(N_{ij})\) of graded submodules \(N_{ij} \leq g\) M is finite or
\(\text{Cl.Spec}_g(M)\). Hence every closed set in \(\text{Cl.Spec}_g(M)\) is either finite or
\(\text{Cl.Spec}_g(M)\). Therefore \(\text{Cl.Spec}_g(M)\) is the cofinite topology. □

Suppose that X is a topological space. Let \(x_1\) and \(x_2\) be points in X.
We say that \(x_1\) and \(x_2\) can be separated by neighborhoods if there exists
a neighborhood U of \(x_1\) and neighborhood V of \(x_2\) such that \(U \cap V = \phi\). X is a T\(_2\)-space if any two distinct points of X can be separated by
neighborhoods (see [6].) It is well-known that if X is a finite space, then
X is T\(_1\)-space if and only if X is the discrete space (see [6].) Thus we have
the following corollary.

Corollary 2.6. Let R be a G-graded ring and M a graded R-module such
that \(\text{Cl.Spec}_g(M)\) is finite. Then the following statements are equivalent:
Suppose M is a graded R-module such that M has ACC on intersection of graded classical prime submodules. Then, $\text{Cl.Spec}_g(M)$ is a quasi-compact space.

Proof. Suppose M is a graded R-module such that M has ACC on intersection of graded classical prime submodules. Let \mathcal{W} be a family of open sets covering $\text{Cl.Spec}_g(M)$, and suppose that no finite subfamily of covers $\text{Cl.Spec}_g(M)$. Since $\mathcal{W}_g^2(0) = \text{Cl.Spec}_g(M)$, then we may use the ACC on the intersection of graded classical prime submodules to choose a graded submodule N maximal with respect to the property that no finite subfamily of covers $\mathcal{W}_g^2(N)$. We claim that N is a graded classical prime submodule of M, for if not, then there exist $m_\lambda \in h(M)$ and $r_g, s_h \in h(R)$, such that $r_g s_h m_\lambda \in N$, $r_g m_\lambda \notin N$ and $s_h m_\lambda \notin N$. Thus $NN + Rr_g m_\lambda$ and $NN + Rs_h m_\lambda$. Hence, without loss of generality, there must exist a finite subfamily of that covers both $\mathcal{W}_g^2(N + Rr_g m_\lambda)$ and $\mathcal{W}_g^2(N + Rs_h m_\lambda)$. Let $C \in \mathcal{W}_g^2(N)$. Since $r_g s_h m_\lambda \in N$, $r_g s_h m_\lambda \in C$ and since C is graded classical prime, $r_g m_\lambda \in C$ or $s_h m_\lambda \in C$. Thus either $C \in \mathcal{W}_g^2(N + Rr_g m_\lambda)$ or $C \in \mathcal{W}_g^2(N + Rs_h m_\lambda)$, and hence $\mathcal{W}_g^2(N) \subseteq \mathcal{W}_g^2(N + Rr_g m_\lambda) \cup \mathcal{W}_g^2(N + Rs_h m_\lambda)$. Thus, $\mathcal{W}_g^2(N)$ is covered with the finite subfamily of a contradiction. Therefore, N is a graded classical prime submodule of M.

Now, choose $W \in \mathcal{W}$ such that $N \in W$. Hence N must have a neighborhood $\bigcap_{i=1}^n U_g^2(P_i)$, for some graded submodule P_i of M and $n \in \mathbb{N}$, such that $\bigcap_{i=1}^n U_g^2(P_i) \subseteq W$. We claim that for each i $(1 \leq i \leq n)$, $N \in U_g^2(P_i + N) \subseteq U_g^2(P_i)$. To see this, assume that $C \in U_g^2(P_i + N)$, i.e., $P_i + NC$. So $P_i C$, i.e., $C \in U_g^2(P_i)$. On the other hand, $N \in U_g^2(P_i)$, i.e., $P_i N$. Therefore, $P_i + NC$, i.e., $C \in U_g^2(P_i + N)$. Consequently, $N \in \bigcap_{i=1}^n U_g^2(P_i + N) \subseteq \bigcap_{i=1}^n U_g^2(P_i) \subseteq W$.

Theorem 2.7. Let R be a G-graded ring and M a graded R-module such that M has ACC on intersection of graded classical prime submodules. Then, $\text{Cl.Spec}_g(M)$ is a quasi-compact space.
Hence $\bigcap_{i=1}^{n} U^g_i(P'_i)$, where $P'_i := P_i + N$, is a neighborhood of N such that $\bigcap_{i=1}^{n} U^g_i(P'_i) \subseteq W$. Since for each i ($1 \leq i \leq n$), then NP'_i, $V^g_i(P'_i)$ can be covered by some finite subfamily $'_i$ of . But, $V^g_i(N) \setminus [\bigcup_{i=1}^{n} V^g_i(P'_i)] = V^g_i(N) \setminus [\bigcup_{i=1}^{n} U^g_i(P'_i)] \cap V^g_i(N) \subseteq W$, and so $V^g_i(N)$ can be covered by $'_1 \cup '_2 \cup ... \cup '_n \cup \{W\}$, contrary to our choice of N. Thus, there must exist a finite subfamily of which covers $Cl.Spec_g(M)$. Therefore, $Cl.Spec_g(M)$ is a quasi-compact space. □

3. Graded modules whose Zariski-like topologies are spectral spaces

A topological space X is called irreducible if $X \neq \phi$ and every finite intersection of non-empty open sets of X is non-empty. A (non-empty) subset Y of a topology space X is called an irreducible set if the subspace Y of X is irreducible, equivalently if Y_1 and Y_2 are closed subset of X and satisfy $Y \subseteq Y_1 \cup Y_2$, then $Y \subseteq Y_1$ or $Y \subseteq Y_2$ (see [6].)

Let Y be a closed subset of a topological space. An element $y \in Y$ is called a generic point of Y if $Y = cl\{y\}$. Note that a generic point of the irreducible closed subset Y of a topological space is unique if the topological space is a T_0-space (see [5].)

A spectral space is a topological space homomorphism to the prime spectrum of a commutative ring equipped with the Zariski topology. Spectral spaces have been characterized by Hochster [5] as the topological space W which satisfy the following conditions:

i) W is a T_0-space.

ii) W is quasi-compact.

iii) the quasi-compact open subsets of W are closed under finite intersections and form an open basis.

iv) each irreducible closed subset of W has a generic point.

Let M be a G-graded R-Module and Y a subset of $Cl.Spec_g(M)$. We will denote $\bigcap_{C \in Y} C$ by $\exists(Y)$ (note that if $Y = \phi$, then $\exists(Y) = M$).

Lemma 3.1. Let R be a G-graded ring and M a graded R-module. Then for each $C \in Cl.Spec_g(M)$, $V^g(C)$ is irreducible.
Let R be a G-graded ring, M a graded R-module and $Y \subseteq Cl.Spec_g(M)$.

i) If Y is irreducible, then $\mathfrak{N}(Y)$ is a graded classical prime submodule.

ii) If $\mathfrak{N}(Y)$ is a graded classical prime submodule and $\mathfrak{N}(Y) \in cl(Y)$, then Y is irreducible.

Proof. (i) Assume that Y is an irreducible subset of $Cl.Spec_g(M)$. Clearly, $\mathfrak{N}(Y) = \bigcap_{C \in Y} C_gM$ and $Y \subseteq V_g^k(\mathfrak{N}(Y))$. Let I, J be graded ideals of R and N be a graded submodule of M such that $IJN \subseteq \mathfrak{N}(Y)$. It is easy to see that $Y \subseteq V_g^k(IJN) \subseteq V_g^k(IN) \cup V_g^k(JN)$. Since Y is irreducible, either $Y \subseteq V_g^k(IN)$ or $Y \subseteq V_g^k(JN)$. If $Y \subseteq V_g^k(IN)$, then $IN \subseteq C$, for all $C \in Y$. Thus $IN \subseteq \mathfrak{N}(Y)$. If $Y \subseteq V_g^k(JN)$, then $JN \subseteq C$, for all $C \in Y$. Hence $JN \subseteq \mathfrak{N}(Y)$. Thus by [1, Theorem 2.1.], $\mathfrak{N}(Y)$ is a graded classical prime submodule of M. (ii) Assume that $C := \mathfrak{N}(Y)$ is a graded classical prime submodule of M and $C \in cl(Y)$. It is easy to see that $cl(Y) = V_g^k(C)$. Now let $Y \subseteq Y_1 \cup Y_2$, where Y_1, Y_2 are closed sets. Then we have $V_g^k(C) = cl(Y) \subseteq Y_1 \cup Y_2$. Since $V_g^k(C) \subseteq Y_1 \cup Y_2$ and by Lemma 3.1, $V_g^k(C)$ is irreducible, $V_g^k(C) \subseteq Y_1$ or $V_g^k(C) \subseteq Y_2$. Hence either $Y \subseteq Y_1$ or $Y \subseteq Y_2$. Thus Y is irreducible. □

Corollary 3.3. Let R be a G-graded ring, M a graded R-module and N a graded submodule of M. Then the subset $V_g^k(N)$ of $Cl.Spec_g(M)$ is irreducible if and only if $Gr^d_M(N)$ is a graded classical prime submodule. Consequently, $Cl.Spec_g(M)$ is irreducible if and only if $Gr^d_M(M)$ is a graded classical prime submodule.
Proof. \((\Rightarrow)\) Let \(Y := V_2^g(N)\) be an irreducible subset of \(Cl.\ Spec_g(M)\). Then we have \(\mathcal{G}(Y) = Gr^cl_{M}(N)\) so that \(Gr^cl_{M}(N)\) is a graded classical prime submodule of \(M\) by Theorem 3.2(i).

\((\Leftarrow)\) By [4, Proposition 3.4(1)], for each graded submodule \(N\) of \(M\), \(V_2^g(N) = V_2^g(Gr^cl_{M}(N))\). Now let \(Gr^cl_{M}(N)\) is a graded classical prime submodule of \(M\). Then \(Gr^cl_{M}(N) \in V_2^g(N)\), and hence by Theorem 3.2 (ii), \(V_2^g(N)\) is irreducible. \(\Box\)

Lemma 3.4. Let \(R\) be a \(G\)-graded ring and \(M\) a graded \(R\)-module. Then

i) Every \(C \in Cl.\ Spec_g(M)\) is a generic point of the irreducible closed subset \(V_2(C)\).

ii) Every finite irreducible closed subset of \(Cl.\ Spec_g(M)\) has a generic point.

Proof.

i) is clear by Corollary 2.2(i).

ii) Let \(Y\) be an irreducible closed subset of \(Cl.\ Spec_g(M)\) and \(Y = \{C_1, C_2, ..., C_n\}\), where \(C_i \in Cl.\ Spec_g(M)\), \(n \in \mathbb{N}\). By Lemma 2.1(i), \(Y = cl(Y) = V_2(C_1) \cup V_2(C_2) \cup ... \cup V_2(C_n)\). Since \(Y\) is irreducible, \(Y = V_2(C_i)\) for some \(i(1 \leq i \leq n)\). Now by (i), \(C_i\) is a generic point of \(Y\).

\(\Box\)

Theorem 3.5. Let \(R\) be a \(G\)-graded ring and \(M\) a graded \(R\)-module such that \(Cl.\ Spec_g(M)\) is finite. Then \(Cl.\ Spec_g(M)\) is a spectral space (with the Zariski-like topology). Consequently, for each finite graded \(R\)-module \(M\), \(Cl.\ Spec_g(M)\) is a spectral space.

Proof. Since \(Cl.\ Spec_g(M)\) is finite, every subset of \(Cl.\ Spec_g(M)\) is quasi-compact. Hence the quasi-compact open sets of \(Cl.\ Spec_g(M)\) are closed under finite intersection and form an open basis (note: this basis is \(\beta = \{U_2(N_1) \cap U_2(N_2) \cap ... \cap U_2(N_k) : N_i \leq g M, 1 \leq i \leq k, \text{for some } k \in \mathbb{N}\}\)). Also by Theorem 2.3, \(Cl.\ Spec_g(M)\) a \(T_0\)-space. Moreover, every
irreducible closed subset of \(\text{Cl.Spec}_g(M) \) has a generic point by Lemma 3.4. Therefore \(\text{Cl.Spec}_g(M) \) is a spectral space by Hochster’s characterization.

Let \(X \) be a topological space. By the patch topology on \(X \), we mean the topology which has as a sub-basis for its closed sets the closed sets and compact open sets of the original space. By a patch we mean a set closed in the patch topology. The patch topology associated to a spectral space is compact and \(T_2 \)-space (see [5].)

Definition 3.6. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module, and let \(P^g_*(M) \) be the family of all subsets of \(\text{Cl.Spec}_g(M) \) of the form \(V^g_*(N) \cap U^g_*(K) \), where \(N, K \leq_g M \). Clearly \(P^g_*(M) \) contains both \(\text{Cl.Spec}_g(M) \) and \(\phi \) because \(\text{Cl.Spec}_g(M) = V^g_*(0) \cup U^g_*(M) \) and \(\phi = V^g_*(M) \cap U^g_*(0) \). Let \(T^g_*(M) \) be the collection of all unions of finite intersections of elements of \(P^g_*(M) \). Then, \(T^g_*(M) \) is a topology on \(\text{Cl.Spec}_g(M) \) and is called the patch-like topology of \(M \), in fact, \(P^g_*(M) \) is a sub-basis for the patch-like topology of \(M \).

Theorem 3.7. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module. Then, \(\text{Cl.Spec}_g(M) \) with the patch-like topology is a \(T_2 \)-space.

Proof. Suppose distinct points \(C_1, C_2 \in \text{Cl.Spec}_g(M) \). Since \(C_1 \neq C_2 \), then either \(C_1C_2 \) or \(C_2C_1 \). Assume that \(C_1C_2 \). By Definition 3.6, \(P_1 := U^g_*(M) \cap V^g_*(C_1) \) is a patch-like-neighborhood of \(C_1 \) and \(P_2 := U^g_*(C_1) \cap V^g_*(C_2) \) is a patch-like-neighborhood of \(C_2 \). Clearly, \(U^g_*(C_1) \cap V^g_*(C_1) = \phi \), and thus \(P_1 \cap P_2 = \phi \). Therefore, \(\text{Cl.Spec}_g(M) \) is a \(T_2 \)-space.

The proof of the next theorem is similar to the proof of Theorem 2.7.

Theorem 3.8. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module such that \(M \) has ACC on intersection of graded classical prime submodules. Then \(\text{Cl.Spec}_g(M) \) with the patch-like topology is a compact space.

Theorem 3.9. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module such that \(M \) has ACC on intersection of graded classical prime submodules. Then every irreducible closed subset of \(\text{Cl.Spec}_g(M) \) (with the Zariski-like topology) has a generic point.
Proof. Let Y be an irreducible closed subset of $\text{Cl.Spec}_g(M)$. By Definition 3.6 for each $C \in Y$, $V^g_*(C)$ is an open subset of $\text{Cl.Spec}_g(M)$ with the patch-like topology. On the other hand since $Y \subseteq \text{Cl.Spec}_g(M)$ is closed with the Zariski-like topology, the complement of Y is open by this topology. This yields that the complement of Y is open with the patch-like topology. So $Y \subseteq \text{Cl.Spec}_g(M)$ is closed with the patch-like topology. Since $\text{Cl.Spec}_g(M)$ is a compact space in patch-like topology by Theorem 3.8 and Y is closed in $\text{Cl.Spec}_g(M)$, we have Y is compact space in patch-like topology. Now $Y = \bigcup_{C \in Y} V^g_*(C)$ by Lemma 2.1(ii) and each $V^g_*(C)$ is open in patch-like topology. Hence there exists a finite set $Y_1 \subseteq Y$ such that $Y = \bigcup_{C \in Y_1} V^g_*(C)$. Since Y is irreducible, $Y = V^g_*(C) = cl(\{C\})$ for some $C \in Y$. Therefore, C is a generic point for Y. □

We need the following evident lemma

Lemma 3.10. Assume τ_1 and τ_2 are two topologies on X such that $\tau_1 \subseteq \tau_2$. If X is quasi-compact in τ_2, then X is also quasi-compact in τ_1.

Theorem 3.11. Let R be a G-graded ring and M a graded R-module such that M has ACC on intersection of graded classical prime submodules. Then for each $n \in \mathbb{N}$, and graded submodules $N_i (1 \leq i \leq n)$ of M, $U^g_*(N_1) \cap U^g_*(N_2) \cap \ldots \cap U^g_*(N_n)$ is a quasi-compact subset of $\text{Cl.Spec}_g(M)$ with the Zariski-like topology.

Proof. Clearly, for each $n \in \mathbb{N}$, and each graded submodules $N_i (1 \leq i \leq n)$ of M, $U^g_*(N_1) \cap U^g_*(N_2) \cap \ldots \cap U^g_*(N_n)$ is a closed set in $\text{Cl.Spec}_g(M)$ with patch-like topology. By Theorem 3.8, $\text{Cl.Spec}_g(M)$ is a compact space with the patch-like topology and since every closed subset of a compact space is compact, $U^g_*(N_1) \cap U^g_*(N_2) \cap \ldots \cap U^g_*(N_n)$ is compact in $\text{Cl.Spec}_g(M)$ with patch-like topology and so by Lemma 3.10, it is quasi-compact in $\text{Cl.Spec}_g(M)$ with the Zariski-like topology. □

Corollary 3.12. Let R be a G-graded ring and M a graded R-module such that M has ACC on intersection of graded classical prime submodules. Then Zariski-like quasi-compact open sets of $\text{Cl.Spec}_g(M)$ are closed under finite intersections.
Proof. It suffices to show that the intersection $Q = Q_1 \cap Q_2$ of two Zariski-like quasi-compact open sets Q_1 and Q_2 of $\text{Cl.Spec}_g(M)$ is Zariski-like quasi-compact set. Each Q_i, $i = 1, 2$, is a finite union of members of the open base $\beta = \{ U^g_g(N_1) \cap U^g_g(N_2) \cap \ldots \cap U^g_j(N_n) : N_i \leq_g M, 1 \leq i \leq n, \text{for some } n \in \mathbb{N} \}$. Hence $Q = \bigcup_{i=1}^{n_i} \bigcap_{j=1}^{n_j} U^g(N_j)$. Let Γ be any open cover of Q. So Γ also covers each $\bigcap_{j=1}^{n_j} U^g(N_j)$ which is Zariski-like quasi-compact by Theorem 3.11. Thus each $\bigcap_{j=1}^{n_j} U^g(N_j)$ has a finite subcover of Γ and so does Q. □

Theorem 3.13. Let R be a G-graded ring and M a graded R-module such that M has ACC on intersection of graded classical prime submodules. Then $\text{Cl.Spec}_g(M)$ (with the Zariski-like topology) is a spectral space.

Proof. By Theorem 2.3, $\text{Cl.Spec}_g(M)$ is a T_0-space. Also, by Theorem 3.11., $\text{Cl.Spec}_g(M)$ is quasi-compact and has a basis of quasi-compact open subsets. Moreover, by Corollary 3.12, the family of quasi-compact open subset of $\text{Cl.Spec}_g(M)$ is closed under finite intersections. Finally, every irreducible closed subset of $\text{Cl.Spec}_g(M)$ has generic point by Theorem 3.9. Thus $\text{Cl.Spec}_g(M)$ is spectral space by Hochster’s characterization. □

References

Khaldoun Al-Zoubi
Department of Mathematics and Statistics,
Jordan University of Science and Technology,
P. O.Box 3030, Irbid 22110,
Jordan
e-mail : kfzoubi@just.edu.jo

and

Malik Jaradat
Department of Mathematics and Statistics,
Jordan University of Science and Technology,
P. O. Box 3030,
Irbid 22110,
Jordan
e-mail : malikjaradat84@yahoo.com