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Abstract

In 2016, Yice and Torunbalcr Aydin [18] defined dual Fibonacci
quaternions. In this paper, we defined the dual third-order Jacob-
sthal quaternions and dual third-order Jacobsthal-Lucas quaternions.
Also, we investigated the relations between the dual third-order Jacob-
sthal quaternions and third-order Jacobsthal numbers. Furthermore,
we gave some their quadratic properties, the summations, the Binet’s
formulas and Cassini-like identities for these quaternions.
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1. Introduction

The real quaternions are a number system which extends to the complex
numbers. They are first described by Irish mathematician William Rowan
Hamilton in 1843. In 1963, Horadam [9] defined the n-th Fibonacci quater-
nion which can be represented as

Qr ={Qn = Fu+iF,1+jFh2+kF, 3 : F, isn—th Fibonacci number},
(1.1)

where i? = j2 = k? = ijk = —1.

In 1969, Iyer [14, 15] derived many relations for the Fibonacci quater-
nions. In 1977, Takin [12, 13] introduced higher order quaternions and gave
some identities for these quaternions. Furthermore, Horadam [10] extend
to quaternions to the complex Fibonacci numbers defined by Harman [6].
In 2012, Halic1 [6] gave generating functions and Binet’s formulas for Fi-
bonacci and Lucas quaternions.

In 2006, Majernik [16] defined a new type of quaternions, the so-called
dual quaternions in the form Qn = {a+bi+c¢j+dk: a,b,c,d € R}, with
the following multiplication schema for the quaternion units

(1.2) i2=j2=k?>=0, ij= —ji = jk = —kj = ki = —ik = 0.

In 2009, Ata and Yayh [1] defined dual quaternions with dual numbers
coefficient as follows:

Qp = {A+Bi+Cj+Dk: A B,C,D e D, i =j? =k* = ijk = -1},

(1.3)

where D = Rlg] = {a +be: a,b€ R, €2 =0, € # 0}. It is clear that Qn
and Qp are different sets. In 2014, Nurkan and Giiven [17] defined dual
Fibonacci quaternions as follows:

(1.4) D = {Qn = ﬁn + iﬁn+1 —|—jﬁn+2 + kﬁn+3 : ﬁn =F,+ €Fn+1},
where i2 =j2 =k? =ijk = —1 and ﬁ'n is the n-th dual Fibonacci number.

In 2016, Yiice and Torunbalci Aydin [18] defined dual Fibonacci quater-
nions as follows:
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NF:{Qn:Fn+iFn+l+an+2+an+3:

F,, is n-th Fibonacci number},

(1.5)

where i2 = j2 = k? =0, ij = —ji = jk = —kj = ki = —ik = 0. For more
details on dual quaternions and generalized dual Fibonacci quaternions, see
[5, 19].

On the other hand, the Jacobsthal numbers have many interesting prop-
erties and applications in many fields of science (see, e.g., [2]). The Jacob-
sthal numbers J,, are defined by the recurrence relation

(1.6) Jo=0, 1 =1, Jpy1 =Jn+2Jp—1, n>1.

Another important sequence is the Jacobsthal-Lucas sequence. This
sequence is defined by the recurrence relation j,11 = jn + 2jn-1, n > 1
and jo =2, j1 = 1. (see, [11]).

In [4], the Jacobsthal recurrence relation (1.6) is extended to higher
order recurrence relations and the basic list of identities provided by A.
F. Horadam [11] is expanded and extended to several identities for some
of the higher order cases. In particular, third-order Jacobsthal numbers,
{Jflg)}nzo, and third-order Jacobsthal-Lucas numbers, {j'y(13)}n20, are de-
fined by

(17) Ty = g8, + 8 4 20®, g —0, 7O = 1P =1, n >0,

n n n

and

(3 (3 (3 . (3 (3 .(3
(1.8) 5%y =3 + 3 + 2, 5 =2, i1 =1, i =5, n >0,
respectively.
The following properties given for third order Jacobsthal numbers and
third order Jacobsthal-Lucas numbers play important roles in this paper
(for more, see [3, 4]).

(1.9) 3J3) 4§ = ontl

n
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(1.10) i =303 = 2§,
3 03 _ ) —2 if n=1 (mod 3)
(1.11) Ttz = 407 = { 1 if n#l (mod3) ’
2 if n=0 (mod 3)
(1.12) i —4J® ={ -3 if n=1 (mod3) ,
1 4if n=2 (mod 3)
(1.13) i8 + 50 =358,
1 if m=0 (mod 3)
(1.14) §® —J®, =8 —1 if n=1 (mod3) ,
0 if n=2 (mod 3)
2
(1.15) (3x25)" + 3J5P = 4,
d JO 0 (mod 3
(1.16) S uP = win if n#0 (mod3)
o ¥ Jﬁgl—l if m=0 (mod 3)
and
2 2
(1.17) (3) =0 (7)" = 2m252,

Using standard techniques for solving recurrence relations, the auxiliary
equation, and its roots are given by

—14+iV3
TR

P -2 —r—-2=0;, =2, and z =

Note that the latter two are the complex conjugate cube roots of unity.
Call them wq and wa, respectively. Thus the Binet formulas can be written
as

_3—2z'\/§

12n+1_3+2i\/§
21

3 _ L ntl _ y(3)
(118) /() = = o (2 V&)

n

|~

wy wy =

and
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. 1 3+ 2tv3 —2 1
i =zt 7“/_w?+ 7“f == (2 4370,
(1.19)

respectively. Here V,Sg) is the sequence defined by

. iy 2 if n=0 (mod 3)
S 3+ ;l\/gw;’l‘+3 ;l\/gwg =< =3 if n=1 (mod 3)
1 if n=2 (mod 3)

(1.20)

Using Eq. (1.20) is easy to see that for all n > 0:

0 if n=0 (mod 3)
VO 4ov® 4 av®, =8 7 if n=1 (mod3)
-7 if n=2 (mod 3)

Recently in [3], we have defined a new type of quaternions with the
third-order Jacobsthal and third-order Jacobsthal-Lucas number compo-
nents as

T = J® + 7% i+ 795 + 1P,k

and
. . 3) s, (3) s .(3
G =@ + 38+ i85 + 50k,
respectively, where i2 = j2 = k% = ijk = —1, and we studied the properties

of these quaternions. Also, we derived the generating functions and many
other identities for the third-order Jacobsthal and third-order Jacobsthal-
Lucas quaternions.

In this paper, we define the dual third-order Jacobsthal quaternions and
dual third-order Jacobsthal-Lucas quaternions as follows:

(1.21) ING = @ + 79 i+ 795+ I8k (m > 0)

m

and

(1.22) GNG =B 458 14595+ 5Pk (m > 0),
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respectively. Here i? = j> = k2 = 0, ij = —ji = jk = —kj = ki =
—ik = 0. Also, we investigated the relations between the dual third-order
Jacobsthal quaternions and third-order Jacobsthal numbers. Furthermore,
we give some their quadratic properties, the Binet’s formulas, d’Ocagne
and Cassini-like identities for these quaternions.

2. Dual Third-Order Jacobsthal Quaternions

We can define dual third-order Jacobsthal quaternions by using third-order
Jacobsthal numbers. The n-th third-order Jacobsthal number J7(l3) is de-
fined by Eq. (1.7). Then, we can define the dual third-order Jacobsthal
quaternions as follows:

21)  Ny={IN® =J® + 79 i+ %5+ 1%k mo},

where J}r::’ ) is the m-th third-order Jacobsthal number and {i,j, k} as in Eq.
(1.2). Also, we can define the dual third-order Jacobsthal-Lucas quaternion
as follows:

(2.2) N; = NG =58 + 51+ + 19k mo},

3)

where jy,” is the m-th third-order Jacobsthal-Lucas number.

Then, the addition and subtraction of the dual third-order Jacobsthal
and dual third-order Jacobsthal-Lucas quaternions is defined by

ING £ iND
— (I + I i+ I8+ I8 k)

(2.3) :t(jv(g) +j,(§’lli + jf,i’lﬂj + j§>+3k>
= (I 25D+ (JD, £59 i+ (18, + 593
3 (3
+(J751)+3 i]7(n2r3)k

and the multiplication of the dual third-order Jacobsthal and dual third-
order Jacobsthal-Lucas quaternions is defined by
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IND NG
3 3 3 3 . .3
(2.4 (an) + L )+11 + J7(n)+2J + Jﬁn)+3k)( ) 7(n)+11 + 37(71)+2J + ]'r(n)+3k)

3 3 3 3
— I 4 (59 + TD i+ (59, + 78,580
I ks + Tt e

Now, the scalar and the vector part of the J N,gf ) which is the m-th term
of the dual third-order Jacobsthal sequence {J Ns' )}mZO are denoted by

(2.5) (SJN,SSB)’ VJN,Sf)) = (Jr(r?)ﬂ ijlli + J( J)FQ_] + J( J)r3k)
Thus, the dual third-order Jacobsthal JNy(,f’) is given by SJN(3) + VJN(3).
Then, relation (2.4) is defined by

(2.6)  INSGND =5 @S yo + S yeV e + S0V

TN
The conjugate of dual third-order Jacobsthal quaternion JNT(,L) is de-
noted by J—N( ) and it is JN(3) @ _ J(?’)ﬂi— J(?’)Hj J! J)r3k The norm

of J NT(S’ ) is defined as

JNG

- _ 2
27 NR(INE) = JINPING =TNDING = (NG
Then, we give the following theorem using statements (2.1), (2.3) and

(2.4).

Theorem 2.1. Let J,(s) and JNT(E:’) be the m-th terms of the third-order
Jacobsthal sequence {Jg’ ) }m>0 and the dual third-order Jacobsthal quater-

nion sequence {JNf,s;g)}mZO, respectively. In this case, for m > 0 we can
give the following relations:

(2.8) 2JNG + NP + IND, = NP,

(2.9) ING — NS i — TIN5 — ING) k= @),

m
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3. 220m+1) (1 4 4i + 8j + 16k)
m (3)
(3))? 3) \? 3 \2_1 — 22N,
(INE) + (NP ) +(IND,) = _omtay G 193 4 4k)
+2(1 —i—j+2k)

-~/

(2.10)

where

m

UNS = U+ Ui+ Ui+ U gk and U = £ (V) +3v,%),).

Proof. (2.8): By the equations ING = g + J,(,?J)rli +J )+2‘] + J(3)+3k
and (1.7), we get 2ING) + NG )1 —i—JN( )

(2J(3) + 278 142785 + 2J,§J+ k)

+(J m+1+ I ) 1+J(J)r3J+J()+4k)

0+ i a0 I

= (275 + Jm—)i—l + Iyke) + I+ I, + I i

28, + 79+ TP i+ I8, + I + J,(n>+5)k

= I+ T T+ T gk

= N5

+

(2.9): By using JN in the Eq. (2.1) and conditions (1.2), we get
ING — JN®) i - INE)5— NGk
= I+ J )Hl " @ i+ o 131{
— (I + I8+ TP 5+ 1P k)i
— (¥, + J(3) i+ J%,5+ 7% K)j
— (¥, + J§)+41 + 95+ I8 ok
(3)

(2.10): By using Eqs. (2.4) and (1.18), we get

2
(211) (JND) = (J9) + 20079 1+ 200 T3 + 20D T8k

m “Ym+1 m m

and

)
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(2127 + ((2m+1 _ VTS’))Q n (2m+2 _ Vn(i)_1>2 n (2m+3 V77(1?1|)-2)2)

35 (2022000 —ome2 (v oV, 4V 4 14)

% (3 . 22(m+1) _ 2m+2U’r(r::’) + 2) ’

where UfY) = 3 (Vi) + 2,3, +4Vitly) = 2 (V3 +3Vls). Finally,
from the Eqs (2.11 ) and (2 12) we obtaln

2.
() o) )

= (J I8 J
((73(3>> e )( L+ J()) ;((l ;nf}( RIVSINE
( 7(3)1,514)& + Ty Ty + J7(YL-)‘!-2J7(H-)|—4).]

+2( ,(§’>J§13+J(3) T+ I8 5) K

1 3. 22(m+1)(1 +41+83+16k)—2m+2UN7§§’)
—om U (i 425+ 4k) + 21 —i—j+2k) )’

where UNY = U® + U®) i+ UP L5+ Uk O
Theorem 2.2. Let Jngf) and qugf) be the m-th terms of the dual third-
order Jacobsthal quaternion sequence {J Ns' )}mZO and the dual third-order

Jacobsthal-Lucas quaternion sequence {jNg’)}mzo, respectively. The fol-
lowing relations are satisfied

(2.13) INLy = BINSL, = 2N,
(2.14) JND |+ iN® =3JNE),

(2.15) (jN,s:?)) +3JNB) NG = 431 4 4i + 8] + 16k).
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Proof. (2.13): From identities between third-order Jacobsthal number

and third-order Jacobsthal-Lucas number (1.10) and (2.3), it follows that
J.vaz)w 3JN} s = Jﬁnl:a + JT(n)+41 + anznfﬂ + i ok

3+ I8 i+ TP 5+ I8 k)
= (s = 3T a) + (ks — 375008

+ (]'r(nz|—5 3J7(33r5)' (]*r(n-)f—G 3J(3) 6)k

=25 + 258 14295+ zjyﬁf’igk

= 2]N751).

The proof of (2.14) is similar to (2.13), using the identity (1.13). (2.15):
Now, using Eqgs. (2.4), (2.11) and (1.15), we get (jNy(,?)) +3JN! _)F3JN7(3J)r3

= ( '(3)) + 2]7(71)]5”111 + 2j7(n)],(nzr2,] + 237(”)]7(33r3k

+ 35033505 + (T sdsoha + IS 43S )i

+ 3(‘]7(7%-)|-3]7(YL-)|-5 +J| 1517(723) + 3(JT(T;3)-)F3]'V(H-)-6 + | —)1—6;77(7121—3)1(

= ( 7(73)) + 3550+ (2](3)37(n-)|-1 +3(I5i S+ I -)f—4j7(n-)|—3)> i
+ (2.7"(n)]£n2&-2 + 3(J( 13.7}(7115 + J7(71-)|-537(3-)|-3)>j

+ (2]"(n)]'£n?&-3 +3(Jhadihe + Jr(rz—)|—6jr(n-)|-3)> k

= 4™+3(1 + 4i + 8j + 16k),

2
the last equality because 3.J¢ 3_3],’(713_3 = 4mH3 _ (j,@) in Eq. (1.15). O

Theorem 2.3. Let J Nﬁ,g) be the m-th term of the dual third-order Ja-
cobsthal quaternion sequence {JN;,{O’ )}mzo- Then, we have the following
identity

1
ZJN oz (T i+ 4+ T) — 4V N + VN,

2. 16)

where VNS = V(¥ + V(_')_ll + Vn(%ZQJ + an(w)r3k

Proof. Since

3) )
3) (3) Joi1 if nm#0 (mod 3)

J 7T—4V + V3
Z m+1 21 ( m~+1 ) { Jgil 1 zf n=0 (mod 3)

2. 17)
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(see [3]), we get

Sito NG = Tatg Y + AT T Y 4 ki
= J,(nll (7 a3+ v

— g (T= v+ Vi)

I =3 (28 -4V +v2s))i
(I = 3 (29 -4V 3, +v25) ) &
= JNG), — QL (T +i+4j+7k) VNI + VNG,
where VN = v +v® i1+ v 5+ vk O

Theorem 2.4. Let JN7(3) and jNT(;?) be the m-th terms of the dual third-
order Jacobsthal quaternion sequence {.J Nf,s% )}mZO and the dual third-order

Jacobsthal-Lucas quaternion sequence { st’ )}mzo; respectively. Then, we
have

2.18)  GNOTND TN NG = 913 iNG) — ;3 TNE)),

(2.19) N ING + TN T

Proof.  (2.18): By the Egs. (2.1), (2.2) and J—st) =J9_ Jﬁili -
I 5= I9 ok, we get INYTNE — TN N
= G+ 5D i+ G005 + Gk (T — T i — TP 5 — I k)
— () = §8i = kol = ) I 4 IS i+ T3 + TS ak)
— 278G i+ 5805 + 1Pk — 2 (TP i+ 9,5+ 1P k)
2N — §D TN,

(2.19): NS IND + TNOTNE)
(3

N A L y,‘jigk)(J(?’) + 9 i+ 805+ 79 k)

= (Jm

+ (G JmHi—jﬁf)Hj—jﬁflgk)(Jﬁf) — I8 i I — TP k)

= ;J(Z) (ﬁn()g‘)]r(j—)i—(l)_‘_jg—)l—l r(r?))i+(jr(3)t]7§3r2 +.7}(7?3r2 W
(33 ?3+m3§m)k 3 3) (3 3) (3

G 0 N
_9i® <5? o

+
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Theorem 2.5 (Binet’s Formulas). Let JN,(f?) and jN,g;o’) be m-th terms
of the dual third-order Jacobsthal quaternion sequence {JN,S‘?)}mZg and

the dual third-order Jacobsthal-Lucas quaternion sequence {.J Néf?)}mzo,
respectively. For m > 0, the Binet’s formulas for these quaternions are as
follows:

1 3+ 2iv3 3—2iV3 1
(B) — —gmt1, 2T 40V m__ 2 4tV m _ — (om+l (3)
é]\gg) TR TR 91 2¥2 T 7 (2 a = VL)
and
1 2 — 2 1
NG = ?2m+3g+3+77“/§w1w{”+377“/§w2w§” == (2m+3g+ 3VN7§~29’)) ,

(2.21)

respectively, where VNS’ ) is the sequence defined by

2-3i+j+2k if n=0 (mod 3)
(2.22) VNG ={ —3+i+2j—3k if n=1 (mod3) ,
1+2i—3j+k if n=2 (mod3)

g:1+2i+4j+8kandw:1+w1,2i+wi2j+k.

Proof.  Repeated use of (1.18) in (2.1) enables one to write for a =
1+ 2i44j+ 8k and w12 = 1 4 wi2i + wioj +k,

INS
LA B R AN EEMA N

_ lom+1l _ 342iV3, m _ 3=2iV3 m
=32 21 W1 21 w2

lom+2 _ 342iV/3, m+1l _ 3=2iv/3 m+1) s
+(72 2“1 21 W2 !

(2.23)
e e ]
+ ( % om+4 _ 3+§zf[3 woln+3 _ 3—3?13 w;n+3) Kk

= 27 BB+ 5By
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and similarly making use of (1.19) in (2.2) yields

3+ 2iV3 m+3—21\/§ -

. . 1 m
NG = D4 il sk = 227 Pk L

7 7
(2.24)

The formulas in (2.23) and (2.24) are called as Binet’s formulas for the
dual third-order Jacobsthal and dual third-order Jacobsthal-Lucas quater-

nions, respectively. Using notation in (2.22), we obtain the results (2.20)
and (2.21). O

Theorem 2.6 (D’Ocagne-like Identity). Let IND be the m th terms
of the dual third-order Jacobsthal quaternion sequence {.J N }m>0 In
this case, for n > m > 0, the d’Ocagne identities for J ngl) is as follows:

NG| gy N
IN® NG IN® NG = L a (2 UND, -2 [gN %) ’
7 +1-i-j+2kUP
(2.25)

m 3 3
(JN< ) ) _JN® gN® — L[ 2 Ha(UNL, —UN)
m+1 m+2 +(1 —i—j+2k) ’

7
(2.26)

where UN'Y. = LV NG — VNS ), a =14 2i + 4 + 8k and U as in

Eq. (2.12).
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Proof. (2.25): Using Egs. (2.20) and (2.22), we get

INSB NG — NS IN)

n

L[ (e VNP (2120 - VN,S’L?
- (2”+2g - VNT(L?_’gl) (2m+1g VNG )

49

1 2n+m+3g2 _ 2”+IQVN7(7§_)|_1 _ 2m+2‘/]\]7(l3)g 4 VN7(Z3) VN;S_);'_:L
49 _2n+m+3g2 + 2n+2gVN7(3) + 2m+1VN7(L?—)&21Q _ VN,sileNr(r?)

~i(a (2"+1UNS)H - 2m+1UN,(f21) +(1—i-j+2UP )
(2.27)

where UN;E’)+1 = %(QVNg)—VNS'il) and VN as in (2.22). In particular,

if n=m+1in Eq. (2.27), we obtain for m > 0,

2 1 ( om+igUuN® —UND))
JN(3) —JN(S) JN(3) — & m+1 m+2
(( 1)n+1) m+2 m 7 +(1 i _j + 2k)
2.28
Od

We will give an example in which we check in a particular case the
Cassini-like identity for dual third-order Jacobsthal quaternions.

Example 2.7. Let {JN§3) : s=0,1,2,3} be the dual third-order Jacob-
sthal quaternions such that JNég) =i+]j+ 2k, JN1(3) =1+1+ 2j+ 5k,
JN2(3) =1+ 2i+5j+ 9k and JN:)E?’) =2+ 5i+ 9j+ 18k. In this case,

2
(INY)" = gD g
= (141 +2j+5k)2 — (1 4 2i + 5§ + 9K) (i + j + 2Kk)

=(1+2i+4j+10k) — (i+j+2k)
=1+i+3j+8k

_ 1 200+ 21+ 45+ 8K) 2UN — UN)
7 +(1—i—j+2k)
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and )
(INg)" = INGY TN
= (14 2i+5j + 9k)? — (2 + 5i + 9j + 18k)(1 + i + 2j + 5k)

= (14 4i+ 10j + 18K) — (2 + 7i + 13j + 28K)

= —1—3i—3j— 10k
_ 1 41+ 21+ 45 + 8k) 2UNSY — UNY)
! +(1—i—j+2k) '

3. Conclusions

There are two differences between the dual third-order Jacobsthal and the
dual coefficient third-order Jacobsthal quaternions. The first one is as
follows: the dual coefficient third-order Jacobsthal quaternionic units are
iZ = j2 = k? = ijk = —1 whereas the dual third-order Jacobsthal quater-
nionic units are i? = j2 = k% =0, ij = —ji = jk = —kj = ki = —ik = 0.
The second one is as follows: the elements of the dual coefficient third-order
Jacobsthal quaternion are I 4 EJy(sJ)rl (2 = 0, € # 0) whereas the ele-
ments of the dual third-order Jacobsthal quaternions are m-th third-order

Jacobsthal number JT(,?).
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