On the (M,D) number of a graph

J. John
Government College of Engineering, India

P. Arul Paul Sudhahar
Rani Anna Gobernment Constituent College for Women, India

and

D. Stalin
Bharathiyar University, India

Received : June 2017. Accepted : March 2019

Abstract

For a connected graph $G = (V,E)$, a monophonic set of G is a set $M \subseteq V(G)$ such that every vertex of G is contained in a monophonic path joining some pair of vertices in M. A subset D of vertices in G is called dominating set if every vertex not in D has at least one neighbour in D. A monophonic dominating set M is both a monophonic and a dominating set. The monophonic,dominating,monophonic domination number $m(G), \gamma(G), \gamma_m(G)$ respectively are the minimum cardinality of the respective sets in G. Monophonic domination number of certain classes of graphs are determined. Connected graph of order p with monophonic domination number $p - 1$ or p is characterised. It is shown that for every two integers $a, b \geq 2$ with $2 \leq a \leq b$, there is a connected graph G such that $\gamma_m(G) = a$ and $\gamma_g(G) = b$, where $\gamma_g(G)$ is the geodetic domination number of a graph.

Keywords: monophonic number, domination number, monophonic domination number, geodetic domination number.

AMS Subject classification: 05C05,05C69
1. Introduction

By a graph $G=(V,E)$, we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary [1]. The vertices u and v in a connected graph G, the distance $d(u,v)$ is the length of a shortest $u-v$ path in G. The eccentricity $e(v)$ of a vertex v in G is the maximum distance from v and a vertex of G. The minimum eccentricity among the vertices of G is the radius, $\text{rad}(G)$ or $r(G)$ and the maximum eccentricity is its diameter, $\text{diam}(G)$ of G. An $u-v$ path of length $d(u,v)$ is called an $u-v$ geodesic. A vertex x is said to lie on a $u-v$ geodesic P if x is a vertex of P including the vertices u and v. A geodesic set of G is a set $S \subseteq V(G)$ such that every vertex of G contained in a geodesic joining some pair of vertices in S. The geodetic number $g(G)$ of G is the minimum order of its geodetic sets and any geodetic set of order $g(G)$ is a geodetic basis of G. The geodetic number was introduced in [7] and further studied in [4,8].

A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called monophonic if it is a chordless path. A monophonic set of G is set $M \subseteq V$ such that every vertex of G is contained in a monophonic path joining some pair of vertices in M. The monophonic number $m(G)$ of G is the minimum order of its monophonic sets and any monophonic set of order $m(G)$ is a minimum monophonic set or simply a $m-$set of G. The monophonic number of a graph G is studied in [5,6,9]. If $e=uv$ is an edge of a graph G with $d(u)=1$ and $d(v)>1$, then we call e a pendent edge, u a leaf and v a support vertex. Let $L(G)$ be the set of all leaves of a graph G. We denote by P_p, C_p and $K_{r,s}$, the path on p vertices, the cycle on p vertices and complete bipartite graph in which one partite set has r vertices and the other partite set has s vertices respectively. For any set M of vertices of G, induced subgraph $<M>$ is the maximal subgraph of G with vertex set M. For any connected graph G, a vertex $v \in V(G)$ is called a cut vertex of G if $<V-\{v\}>$ is no longer connected. A maximum connected induced subgraph without a cut vertex is called a block of G. A graph G is a block graph if every block in G is complete. Sum of two graphs G_1 and G_2 is the union of G_1 and G_2 together with all the lines joining vertices of G_1 to vertices of G_2. Let $N(v) = \{u \in V(G) : uw \in E(G)\}$ is called the neighborhood of the vertex v in G. A vertex v is a simplicial vertex of a graph G if $N(v)$ is complete. A simplex of a graph G is a subgraph of G which is a complete graph. A vertex v in a graph G dominates itself and its neighbors. A set of vertices D in a graph G is a
On the (M,D) number of a graph

A dominating set if each vertex of G is dominated by some vertices of D. The dominating number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. For references on domination parameters in graphs see [2,3]. A set of vertices M in G is called a geodetic dominating set if M is both a geodetic set and a dominating set. The minimum cardinality of a geodetic dominating set of G is its geodetic domination number and is denoted by $\gamma_g(G)$. A geodetic dominating set of size $\gamma_g(G)$ is said to be a γ_g-set. The geodetic domination number of a graph was introduced and studied in [8]. It is easily seen that a dominating set is not in general a monophonic set in a graph G. Also the converse is not valid in general. This has motivated us to study the new domination conception of monophonic domination. We investigate subsets of vertices of a graph that are both a monophonic set and a dominating set. We call these sets as a monophonic dominating sets. We call the minimum cardinality of the monophonic dominating set of G, the monophonic domination number of G. Throughout this paper G denotes simple connected graph with at least two vertices.

The following theorems are used in sequel.

Theorem 1.1. [9] Each simplicial vertex of a connected graph G belongs to every monophonic set of G. In particular every end vertex of a connected graph G belongs to every monophonic set of G.

Theorem 1.2. [8] Each simplicial vertex of a connected graph G belongs to every geodetic dominating set of G. In particular every end vertex of a connected graph G belongs to every geodetic dominating set of G.

2. The Monophonic Domination Number Of a Graph

Definition 2.1. Let G be a connected graph. A set of vertices M in G is called a monophonic dominating set or simply (M,D)-set if M is both a monophonic set and a dominating set. The minimum cardinality of a (M,D)-set of G is its monophonic domination number or simply (M,D)-number and is denoted by $\gamma_m(G)$. A (M,D)-set of size $\gamma_m(G)$ is said to be a γ_m-set.

Example 2.2. For the graph G is given in Figure 2.1, $M = \{v_1, v_4\}$ is a (M,D)-set of G so that $\gamma_m(G) = 2$.
Remark 2.3. Each simplicial vertex of a connected graph G belongs to every (M, D)-set of G.

Remark 2.4. Let G be a connected graph and v be a cut-vertex of G. Then every (M, D)-set contains at least one element from each component of $G - v$.

Remark 2.5. If G is a connected graph of order p, then
\[2 \leq \max\{m(G), \gamma(G)\} \leq \gamma_m(G) \leq p. \]

Remark 2.6. For any cycle C_p, $(p \geq 4)$, \(\gamma_m(C_p) = \gamma(C_p) = \lceil p/3 \rceil \).

In the following, we determine the (M,D)-number of some standard graphs.

Theorem 2.7. For the complete graph K_p ($p \geq 2$), \(\gamma_m(K_p) = p \).

Proof. Since every vertex of the complete graph K_p ($p \geq 2$) is a simplical vertex, the vertex set of K_p is the unique (M, D)-set of K_p. Thus \(\gamma_m(K_p) = p \).

Theorem 2.8. For the wheel $G = W_p$ ($p \geq 4$),
\[\gamma_m(w_p) = \begin{cases} 4, & \text{if } p = 4; \\ 2, & \text{if } p = 5, 6; \\ 3, & \text{if } p \geq 7. \end{cases} \]
Proof. Let \(\{x,v_1,v_2...v_{p-1}\} \) be the vertices of \(G=W_p(p \geq 4) \), with \(\text{deg}(x) = p-1 \).

Case(i) Let \(p = 4 \). Then \(G = K_4 \) and by Theorem 2.7, \(\gamma_m(W_p) = 4 \).

Case(ii) Let \(p = 5 \) or \(6 \). Then \(M = \{v_1,v_3\} \) is a \((M,D)\)-set of \(G \) so that \(\gamma_m(W_p) = 2 \).

Case(iii) Let \(p \geq 7 \). Let \(M = \{x,v_i,v_j\} \) \((1 \leq i \neq j \leq p-1)\), where \(v_i \) and \(v_j \) are any two non adjacent vertices of \(G \). Then \(M \) is a \((M,D)\)-set of \(G \) so that \(\gamma_m(G) \leq 3 \). Suppose that \(\gamma_m(G) = 2 \). Then there exists a \((M,D)\)-set \(M' \) such that \(|M'| = 2 \). If \(M' = \{x,v_i\}, \{1 \leq i \leq p-1\} \), then \(xv_i \), \((1 \leq i \leq p-1)\) is a chord of path \(x-v_i \) and so \(M' \) is not a \((M,D)\)-set of \(G \), which is a contradiction. If \(M' = \{v_i,v_j\} \) \((1 \leq i \neq j \leq p-1)\) then \(M' \) is a monophonic set of \(G \) which is not a dominating set of \(G \), which is a contradiction. Therefore \(\gamma_m(W_p) = 3 \). \(\square \)

Theorem 2.9. For the complete bipartite graph \(G = K_{m,n}, \gamma_m(K_{m,n}) = 2 \), if \(m = n = 1 \)
\(n \) if \(n \geq 2, m = 1 \)
\(\min\{m,n,4\} \) if \(m,n \geq 2 \).

Proof. Case(i). Let \(m=n=1 \). Then \(G = K_2 \). By Theorem 2.7, \(\gamma_m(G) = 2 \).

Case(ii). Let \(m = 1, n \geq 2 \). Then \(G = K_{1,n} \). Let \(M \) be the set of \(n \) end vertices of \(G \). Then by Remark 2.3, \(\gamma_m(G) \geq n \). It is clear that \(M \) is a \((M,D)\)-set of \(G \) so that \(\gamma_m(G) = n \).

Case(iii) Let \(2 \leq m \leq n \). Let \(U = \{u_1, u_2...u_m\} \) and \(V = \{v_1, v_2...v_n\} \) be the bipartite sets of \(G \).

Subcase iii(a). Let \(m = 2, n \geq 2 \). Then \(U = \{u_1, u_2\} \) is a \((M,D)\)-set of \(G \) so that \(\gamma_m(G) = 2 \).

Subcase iii(b). Let \(m = 3 \) and \(n \geq 3 \). Then \(M = \{u_1, u_2, u_3\} \) is a \((M,D)\)-set of \(G \) and so \(\gamma_m(G) \leq 3 \). Let \(M' \) be a \((M,D)\)-set of \(G \) with \(|M'| = 2 \). If \(M' \subset U \), then there exists \(x \in U \) such that \(x \notin M' \). Then the vertex \(x \) does not lie on a monophonic path joining a pair of vertices of \(M' \), which is a contradiction. If \(M' \subset W \), then there exists at least one \(y \in W \) such that \(y \notin M' \). Then the at least one \(y \notin M' \). Then the the vertex \(y \) does not lie on a monophonic path joining a pair of vertices of \(M' \), which is a contradiction. If \(M' \subset U \cup W \), then \(M' = \{u_i, w_j\} \) \((1 \leq i \leq 3), (1 \leq j \leq n)\). Since \(u_i, w_j \) is a chord of the path \(u_i - w_j \), \(M' \) is not a \((M,D)\)-set of \(G \), which is a contradiction. Therefore \(\gamma_m(G) = 3 \).
Subcase iiic. Let $m \geq 4$ and $n \geq 4$. Then $M = \{u_1, u_2, v_1, v_2\}$ is a (M, D) set of G and so that $\gamma_m(G) \leq 4$. By the similar argument given in Subcase iiib, there is no (M, D)-set M' such that $|M'| = 2$ or $|M'| = 3$. Hence $\gamma_m(G) = 4$.

Theorem 2.10. If G is a non complete connected graph such that it has a minimum cut set, then $\gamma_m(G) \leq p - k(G)$.

Proof. Since G is non complete, it is clear that $1 \leq k(G) \leq p - 2$. Let $U = \{u_1, u_2, ..., u_k\}$ be a minimum cut set of G. Let $G_1, G_2, ..., G_r (r \geq 2)$ be the components of $G - U$ and let $M = V(G) - U$. Then every vertex $u_i (1 \leq i \leq k)$ is adjacent to at least one vertex of G_j for every $j (1 \leq j \leq r)$. It is clear that M is a (M, D)-set of G so that $\gamma_m(G) \leq p - k(G)$.

Theorem 2.11. Let G be a connected graph of order $p \geq 2$. Then $\gamma_m(G) = 2$ if and only if there exist a (M, D)-set $M = \{u, v\}$ of G such that $d(u, v) \leq 3$.

Proof. Suppose $\gamma_m(G) = 2$. Let $M = \{u, v\}$ be a (M, D)-set of G. Suppose that $d(u, v) \geq 4$. Then the diametrical path contains at least three internal vertices. Therefore $\gamma_m(G) \geq 3$, which is a contradiction. Therefore $d(u, v) \geq 3$. The converse is clear.

Theorem 2.12. Let G be a connected graph of order $p \geq 2$. Then $\gamma_m(G) = p$ if and only if G is the complete graph on p vertices.

Proof. Suppose $G = K_p$. Then by Theorem 2.7, $\gamma_m(G) = p$. Conversely, let $\gamma_m(G) = p$. Suppose that G is non complete. Then by Theorem 2.10, $\gamma_m(G) \leq p - 1$, which is a contradiction. It follows that G is complete.

Theorem 2.13. Let G be a connected graph of order $p \geq 2$. Then $\gamma_m(G) = p - 1$ if and only if $G = K_1 + \bigcup m_j K_j$, where $\sum m_j \geq 2, j \geq 1$.

Proof. Suppose $\gamma_m(G) = p - 1$. Then by Theorem 2.10, $k(G) = 1$. Therefore G contains only one cut vertex, say v. We show that each component of $G - \{v\}$ is complete. Suppose that there exist a component G_1 of $G - \{v\}$ such that G_1 is non complete. Then $|G_1| \geq 2$. Let u be the non simplicial vertex of G_1. Then $M = V(G) - \{u, v\}$ is a (M, D)-set of G so that $\gamma_m(G) \leq p - 2$, which is a contradiction. Hence each component of $G - \{v\}$ is complete. Therefore $G = K_1 + \bigcup m_j K_j$, where $\sum m_j \geq 2$. Conversely suppose $G = K_1 + \bigcup m_j K_j$ where $\sum m_j \geq 2$. Then it is clear that $\gamma_m(G) = p - 1$.

Remark 2.14. If G is a graph of order p, then $\gamma_m(G) + \gamma_m(\bar{G}) \leq 2p$ and $\gamma_m(G) + \gamma_m(\bar{G}) = 2p$ if and only if $G = K_p$ or $G = \bar{G} = K_p$.

Theorem 2.15. If G is a connected graph of order p, then $\gamma_m(G) + \gamma_m(\bar{G}) = 2p - 1$ if and only if $p \geq 3$ and $G = K_{1, p-1}$ or $G = K_{1, p-1}$.

J. John, P. Arul Paul Sudhahar and D. Stalin
Proof. Suppose \(p \geq 3 \) and \(G = K_{1,p-1} \) or \(\overline{G} = K_{1,p-1} \). Then by Theorem 2.9(ii), \(\gamma_m(G) + \gamma_m(\overline{G}) = 2p - 1 \). Conversely suppose \(\gamma_m(G) + \gamma_m(\overline{G}) = 2p - 1 \). Then \(\gamma_m(G) = p \) or \(\gamma_m(\overline{G}) = p \). Without loss of generality, we assume that \(\gamma_m(G) = p \). Then \(\gamma_m(G) = p - 1 \). We prove that the components of \(G \) are complete graphs. If not, then \(G \) contains a component \(H \) with two non adjacent vertices \(u \) and \(v \). Let \(P \) be a path in \(u - v \) geodesic in \(H \) and \(x \) be a vertex of \(P \) adjacent to \(u \). Let \(S = V(G) - \{x\} \). Then \(S \) is a monophonic dominating set of \(G \) so that \(\gamma_m(G) \leq p - 1 \), which is a contradiction to \(\gamma_m(\overline{G}) = p \). If \(G \) is not connected, then \(p \geq 2 \) and \(G \) is connected. By Theorem 2.13, we find that there exists a vertex \(v \) in \(G \) such that \(v \) is adjacent to every other vertex of \(G \) and \(G - v \) is the union of at least two complete graphs. Therefore \(p \geq 3 \). Since \(\gamma_m(\overline{G}) = p \), the components of \(G - \{v\} \) are isolated vertices. This shows that \(G = K_{1,p-1} \). \(\square \)

3. Realization results

Theorem 3.1. For any two integers \(a,b \geq 2 \), there is a connected graph \(G \) such that \(\gamma(G) = a, m(G) = b \) and \(\gamma_m(G) = a + b \).

Proof. Let \(F : r,s,u,v,t,r \) be a copy of \(C_5 \). Let \(H \) be a graph obtained from \(F \) by adding the new vertices \(z_1, z_2, ..., z_{b-1} \) and join each to the vertex \(r \). Let \(G \) be the graph obtained from \(H \) by taking a copy of the path on \(3(a-2)+1 \) vertices \(y_0, y_1, ..., y_{3(a-2)} \) and joining \(y_0 \) to the vertex \(u \) as shown in the Figure 3.1. Let \(Z = \{r, u, y_2, y_3, ..., y_{3(a-2)}\} \). Then it is clear that \(Z \) is a minimum dominating set of \(G \) so that \(\gamma(G) = a \). Let \(Z' = \{z_1, z_2, ..., z_{b-1}, y_3(a-2)\} \). Then by Theorem 1.1, \(Z' \) is a subset of every monophonic set of \(G \) and so \(m(G) \geq b \). Now \(Z' \) is a monophonic set of \(G \) so that \(m(G) = b \). By Remark 2.3, \(Z' \) is subset of every \((M,D)\)-set of \(G \). Now, let \(M = Z \cup Z' \). It is clear that \(M \) is a minimum \((M,D)\)-set of \(G \) so that \(\gamma_m(G) = a + b \). \(\square \)
Theorem 3.2. For any two integers \(a, b \geq 2 \) with \(2 \leq a \leq b \), there is a connected graph \(G \) such that \(\gamma_m(G) = a \) and \(\gamma_g(G) = b \).

Proof. Let \(P : x, y, z \) be a path on three vertices. Let \(P_i : u_i, v_i(1 \leq i \leq b - a + 2) \) be a path on two vertices. Let \(H \) be a graph obtained from \(P \) and \(P_i \) by joining each \(u_i(1 \leq i \leq b - a + 2) \) with \(x \) and each \(v_i(1 \leq i \leq b - a + 2) \) with \(z \). Let \(G \) be a graph obtained from \(H \) by adding the new vertices \(z_1, z_2, \ldots, z_{a-2} \) and joining each \(z_i(1 \leq i \leq a - 2) \) with \(x \) and \(y \) as shown in Figure 3.2. First we show that \(\gamma_m(G) = a \). Let \(Z' = \{z_1, z_2, \ldots, z_{a-2}\} \) be the set of all of simplicial vertices of \(G \). By Remark 2.3, \(Z \) is subset of every \((M,D)\)-set of \(G \). It is clear that \(Z \) is not a \((M,D)\)-set of \(G \) and so \(\gamma_m(G) \geq a \). However \(M = Z \cup \{x, z\} \) is a \((M,D)\)-set of \(G \) so that \(\gamma_m(G) = a \). Next, we show that \(\gamma_g(G) = b \). By Theorem 1.2 \(Z \) is subset of every geodetic dominating.
set of G. It can be easily verified that Z is not a geodetic dominating set of G. Now $M = Z \cup \{v_1, v_2, \ldots, v_{b-a+2}\}$ is a geodetic dominating set of G so that $\gamma_g(G) \leq b$. Let $H_i = \{u_i, v_i\} (1 \leq i \leq b - a + 2)$. Let S be a geodetic dominating set of G. Suppose that $z \in S$. Then S contains at least one element of each $H_i (1 \leq i \leq b - a + 2)$. If not suppose that $u_1, v_1 \notin S$. Then u_1, v_1 do not lie on a geodesic joining a pair of vertices of S, which is a contradiction. Therefore S contains at least one element of each $H_i (1 \leq i \leq b - a + 2)$. Hence it follows that $\gamma_g(G) \geq a - 2 + 1 + b - a + 2 = b + 1$, which is a contradiction. Therefore $z \notin S$. Let $G_i = \{u_i, v_{i+1}\} (1 \leq i \leq b - a + 1)$, $Q_i = \{v_i, u_{i+1}\} (1 \leq i \leq b - a + 1)$ and $S' = \{v_1, v_2, \ldots, v_{b-a+2}\}$. It is easily observed that S contain at least one element from each $G_i (1 \leq i \leq b - a + 2)$ or least one element from each $Q_i (1 \leq i \leq b - a + 2)$ or $S' \subseteq S$. Hence it follows that $\gamma_g(G) = a - 2 + b - a + 2 = b$. □

4. Block Graphs

Theorem 4.1. Let G be a connected block graph of order $p \geq 2$, and let M be the set of simplicial vertices of G. Then M is the unique minimum monophonic set of G.

Proof. The theorem is obvious when $M = V(G)$. Hence assume that $M \subset V(G)$. Let $v \in V(G) - M$ be an arbitrary vertex. It follows that v is a cut-vertex of G. Let H and H' be two components of $G - \{v\}$ and H and H' are also block
graphs. Let \(x \in V(H) \) and \(x' \in V(H') \) be two simplicial vertices of \(G \). Let \(P \) be a monophonic path from \(x \) to \(x' \) in \(G \). Since \(v \) is a cut-vertex of \(G \) containing \(v \), the monophonic path contains \(v \). Hence \(P \) is a \(x - x' \) monophonic path of \(G \) containing \(v \). Then \(J[M] = V(G) \). Thus \(M \) is a monophonic set of \(G \). As every monophonic set \(M' \) of \(G \) must contain \(M \), the set \(M \) is the unique monophonic set of \(G \). \end{proof}

Theorem 4.2. If \(G \) is a connected block graph of order \(p \geq 2 \), then the following conditions are equivalent.

\[(a) \; \gamma_m(G) = m(G) = \gamma(G).
\]

\[(b) \; \text{The set } M \text{ of simplicial vertices of } G \text{ is a minimum dominating set of } G.
\]

\[(c) \; \text{Every block of } G \text{ contains at most one simplicial vertex, and every vertex of } G \text{ belongs to exactly one simplex of } G.
\]

Proof. \((a) \Rightarrow (b)\). Suppose \(\gamma_m(G) = m(G) = \gamma(G) \). Then by Theorem 4.1, the set \(M \) of simplicial vertices of \(G \) is a minimum dominating set of \(G \).

\((b) \Rightarrow (a)\). Suppose the set \(M \) of simplicial vertices of \(G \) is a minimum dominating set of \(G \). It follows that \(\gamma_m(G) = m(G) = \gamma(G) \).

\((c) \Rightarrow (b)\). Let \(G_1, G_2, \ldots, G_k \) be the simplexes of \(G \) with simplicial vertices \(v_i \in V(G_i) \) for \(i = \{1, 2, \ldots, k\} \). Clearly each simplex \(G_i \) is also a block of \(G \). Since every block of \(G \) contains at most one simplicial vertex, \(v_i \) is the only simplicial vertex of \(G_i \). The hypothesis that every vertex of \(G \) belongs to exactly one simplex of \(G \) shows that \(V(G) = V(G_1) \cup V(G_2) \cup \ldots \cup V(G_k) \). Therefore \(M = \{v_1, v_2, \ldots, v_k\} \) is a dominating set of \(G \). On the contrary, suppose that \(G \) contains a dominating set \(M' \) with \(|M'| < |M| \). This implies that there exists a vertex \(y \in M' \) such that \(y \) dominates at least two simplicial vertices, say \(v_1 \) and \(v_2 \) which is a contradiction. This contradiction shows that \(y \) belongs to the simplexes \(G_1 \) and \(G_2 \). Hence \(M \) is a minimum dominating set of \(G \).

\((b) \Rightarrow (c)\). Suppose that the set \(M \) of simplicial vertices of \(G \) is a minimum dominating set of \(G \). If there is a block containing two simplicial vertices \(u \) and \(v \), then \(M - \{u\} \) is also a dominating set of \(G \), which is a contradiction. This shows that every block of \(G \) contains at most one simplicial vertex. If there exists a vertex which does not belong to any simplex of \(G \), then \(M \) is not a dominating set of \(G \), which is a contradiction. Finally, on the contrary, suppose that there is a vertex \(u \) belonging to at least two simplexes of \(G_1 \) and \(G_2 \). If \(v_1 \) and \(v_2 \) are simplicial vertices of \(G_1 \) and \(G_2 \), then \((M - \{v_1, v_2\}) \cup \{u\} \) is a dominating set of \(G \), which is a contradiction. Hence, every vertex of \(G \) belong to exactly one simplex of \(G \). \end{proof}
References

J. John
Department of Mathematics,
Government College of Engineering,
Tirunelveli-627 007,
India
e-mail: john@gcetly.ac.in

P. Arul Paul Sudhahar
Department of Mathematics
Rani Anna Government constituent college for women
Tirunelveli-627 008
e-mail:arulpaulsudhahar@gmail.com

and
D.S. Stalin
Research and Development Center
Bharathiyar University
Coimbatore-641 046
e-mail: stalinndd@gmail.com