Some bounds for relative automcommutativity degree

Parama Dutta³ orcid.org/0000-0002-6984-9817
Rajat Kanti Nath² orcid.org/0000-0003-4766-6523

Tezpur University, Dept. of Mathematical Sciences, Tezpur, AS, India.
³ parama@gonitsora.com ; ² rajatkantinath@yahoo.com

Received: July 2019 | Accepted: November 2019

Abstract:

We consider the probability that a randomly chosen element of a subgroup of a finite group G is fixed by an automorphism of G. We obtain several bounds for this probability and characterize some finite groups with respect to this probability.

Keywords: Autocommutativity degree; Automorphism group; Autoisoclism.

1. Introduction

Let G be a finite group and $\text{Aut}(G)$ be its automorphism group. The relative autocommutativity degree $\text{Pr}(K, \text{Aut}(G))$ of a subgroup K of G is the probability that a randomly chosen element of K is fixed by an automorphism of G. In other words

$$\text{Pr}(K, \text{Aut}(G)) = \frac{|\{(a, \nu) \in K \times \text{Aut}(G) : \nu(a) = a\}|}{|K||\text{Aut}(G)|}.$$

(1.1)

The notion of $\text{Pr}(K, \text{Aut}(G))$ was introduced in [6] and studied in [6, 10]. A generalization of $\text{Pr}(K, \text{Aut}(G))$ can also be found in [2, 11]. Note that $\text{Pr}(G, \text{Aut}(G))$ is the probability that an automorphism of G fixes an element of it. The ratio $\text{Pr}(G, \text{Aut}(G))$ is also known as the autocommutativity degree of G. It is worth mentioning that autocommutativity degree of G was initially studied by Sherman [12] in 1975.

In this paper, we obtain several bounds for $\text{Pr}(K, \text{Aut}(G))$. We remark that some of these bounds are better than some existing bounds. We also characterize some finite groups with respect to $\text{Pr}(K, \text{Aut}(G))$. We shall conclude this paper showing that the bounds for $\text{Pr}(K, \text{Aut}(G))$ are also applicable for $\text{Pr}(K_1, \text{Aut}(G_1))$ if (K_1, G_1) and (K, G) are autoisoclinic.

For any element $a \in G$ and $\nu \in \text{Aut}(G)$ we write $[a, \nu] := a^{-1}\nu(a)$, the automcommutator of a and ν. We also write $S(K, \text{Aut}(G)) := \{[a, \nu] : a \in K \text{ and } \nu \in \text{Aut}(G)\}$, $L(K, \text{Aut}(G)) := \{a \in K : \nu(a) = a \text{ for all } \nu \in \text{Aut}(G)\}$ and $[K, \text{Aut}(G)] := \langle S(K, \text{Aut}(G)) \rangle$. Note that $L(K, \text{Aut}(G))$ is a normal subgroup of K contained in $K \cap Z(G)$ and $L(K, \text{Aut}(G)) = \bigcap_{\nu \in \text{Aut}(G)} C_K(\nu)$, where $Z(G)$ is the center of G and $C_K(\nu) := \{a \in K : \nu(a) = a\}$ is a subgroup of K. If $K = G$ then $L(K, \text{Aut}(G)) = L(G)$, the absolute centre of G (see [5]). It is also not difficult to see that K is abelian if $\frac{K}{L(K, \text{Aut}(G))}$ is cyclic. Let $C_{\text{Aut}(G)}(a) := \{\nu \in \text{Aut}(G) : \nu(a) = a\}$ for $a \in K$ and $C_{\text{Aut}(G)}(K) := \{\nu \in \text{Aut}(G) : \nu(a) = a \text{ for all } a \in K\}$. Then $C_{\text{Aut}(G)}(a)$ is a subgroup of $\text{Aut}(G)$ and $C_{\text{Aut}(G)}(K) = \bigcap_{a \in K} C_{\text{Aut}(G)}(a)$.

It is easy to see that

$$\{(a, \nu) \in K \times \text{Aut}(G) : \nu(a) = a\} = \bigsqcup_{a \in K} \{\{a\} \times C_{\text{Aut}(G)}(a)\}$$

$$= \bigsqcup_{\nu \in \text{Aut}(G)} (C_K(\nu) \times \{\nu\}),$$

where \bigsqcup stands for union of disjoint sets. Hence
Some bounds for relative autocommutativity degree

\[|K||Aut(G)|\Pr(K, Aut(G)) = \sum_{a \in K} |C_{Aut(G)}(a)| = \sum_{\nu \in Aut(G)} |C_K(\nu)|. \]

(1.2)

Also, for \(\nu \in Aut(G) \) and \(a \in G \), \((\nu, a) \mapsto \nu(a)\) is an action of \(Aut(G) \) on \(G \). The orbit of \(a \in G \) is given by \(orb(a) := \{\nu(a) : \nu \in Aut(G)\} \) and \(|orb(a)| = |Aut(G)|/|C_{Aut(G)}(a)| \).

Hence, (1.2) gives the following generalization of [1, Proposition 2]

(1.3)

\[\Pr(K, Aut(G)) = \frac{1}{|K|} \sum_{a \in K} \frac{1}{|orb(a)|} \]

Note that \(\Pr(K, Aut(G)) = 1 \) if and only if \(K = L(K, Aut(G)) \). Therefore, throughout the paper we consider \(K \neq L(K, Aut(G)) \).

2. Some upper bounds

We begin with the following upper bound for \(\Pr(K, Aut(G)) \).

Theorem 2.1. If \(K \) is a subgroup of \(G \) then

\[\Pr(K, Aut(G)) \leq \frac{1}{2} \left(1 + \frac{1}{[K : L(K, Aut(G))]} \right) \]

with equality if and only if \(|orb(a)| = 2 \) for all \(a \in K \setminus L(K, Aut(G)) \).

Proof. By (1.3), we get

\[\Pr(K, Aut(G)) = \frac{1}{|K|} \left(|L(K, Aut(G))| + \sum_{a \in K \setminus L(K, Aut(G))} \frac{1}{|orb(a)|} \right). \]

(2.1)

Since \(|orb(a)| \geq 2 \) for all \(a \in K \setminus L(K, Aut(G)) \), the result follows from (2.1).
Corollary 2.2. If K is a non-abelian subgroup of G, then $\Pr(K, \text{Aut}(G)) \leq \frac{5}{8}$. Further, $\Pr(K, \text{Aut}(G)) = \frac{5}{8}$ if and only if $|\text{orb}(a)| = 2$ for all $a \in K \setminus L(K, \text{Aut}(G))$ and $\frac{|K|}{|L(K, \text{Aut}(G))|} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. The inequality follows from Theorem 2.1 noting that $|K|/|L(K, \text{Aut}(G))| \geq 4$ if K is non-abelian.

Note that $\Pr(K, \text{Aut}(G)) = \frac{5}{8}$ if and only if $|K|/|L(K, \text{Aut}(G))| = 4$ and equality holds in Theorem 2.1. Hence, the result follows.

Theorem 2.3. If K is a subgroup of G and p the smallest prime dividing $|\text{Aut}(G)|$, then

$$\Pr(K, \text{Aut}(G)) \leq \frac{(p - 1)|L(K, \text{Aut}(G))| + |K|}{p|K|} - \frac{|X_K|(|\text{Aut}(G)| - p)}{p|K||\text{Aut}(G)|}$$

where $X_K = \{a \in K : C_{\text{Aut}(G)}(a) = \{I\}\}$ and I is the identity of $\text{Aut}(G)$.

Proof. Note that $X_K \cap L(K, \text{Aut}(G)) = \emptyset$. Therefore

$$\sum_{a \in K} |C_{\text{Aut}(G)}(a)| = |X_K| + |\text{Aut}(G)||L(K, \text{Aut}(G))| + \sum_{a \in K \setminus (X_K \cup L(K, \text{Aut}(G)))} |C_{\text{Aut}(G)}(a)|.$$

For $a \in K \setminus (X_K \cup L(K, \text{Aut}(G)))$ we have $C_{\text{Aut}(G)}(a) < \text{Aut}(G)$ which implies $|C_{\text{Aut}(G)}(a)| \leq \frac{|\text{Aut}(G)|}{p}$. Therefore

$$\sum_{a \in K} |C_{\text{Aut}(G)}(a)| \leq |X_K| + |\text{Aut}(G)||L(K, \text{Aut}(G))| + \frac{|\text{Aut}(G)||(|K| - |X_K|) - |L(K, \text{Aut}(G))|}{p}.$$

Hence, the result follows from (1.2) and (2.2).

We would like to mention here that Theorem 2.3 gives better upper bound than the upper bound given by [6, Theorem 2.3 (i)]. We also have the following improvement of [6, Corollary 2.2].

Corollary 2.4. Let K be a subgroup of G. Then

$$\Pr(K, \text{Aut}(G)) \leq \frac{p + q - 1}{pq}$$

where p and q are the smallest prime divisors of $|\text{Aut}(G)|$ and $|K|$ respectively. Further, if $q \geq p$ then $\Pr(K, \text{Aut}(G)) \leq \frac{2p - 1}{p^2} \leq \frac{3}{4}$.
Proof. We have \(|K : L(K, Aut(G))| \geq q \) since \(K \neq L(K, Aut(G)) \). Therefore, by Theorem 2.3, we get

\[
\Pr(K, Aut(G)) \leq \frac{1}{p} \left(1 + \frac{p - 1}{|K : L(K, Aut(G))|} \right) \leq \frac{p + q - 1}{pq}.
\]

Corollary 2.5. If \(K \) is a non-abelian subgroup of \(G \) then

\[
\Pr(K, Aut(G)) \leq \frac{q^2 + p - 1}{pq^2}
\]

where \(p \) and \(q \) denote respectively the smallest prime divisors of \(|Aut(G)| \) and \(|K| \). Further, if \(q \geq p \) then \(\Pr(K, Aut(G)) \leq \frac{q^2 + p - 1}{pq} \leq \frac{5}{9} \).

Proof. The fact that \(K \) is a non-abelian subgroup of \(G \) implies \(|K : L(K, Aut(G))| \geq q^2 \). Hence

\[
\Pr(K, Aut(G)) \leq \frac{1}{p} \left(1 + \frac{p - 1}{|K : L(K, Aut(G))|} \right) \leq \frac{q^2 + p - 1}{pq^2}
\]

by Theorem 2.3.

Now we obtain some characterizations of a subgroup \(K \) of \(G \) if equality holds in Corollaries 2.4 and 2.5.

Theorem 2.6. If \(K \) is a subgroup of \(G \) and \(\Pr(K, Aut(G)) = \frac{p + q - 1}{pq} \), where \(p, q \) are the smallest prime divisors of \(|Aut(G)| \) and \(|K| \), respectively, then

\[
\frac{K}{L(K, Aut(G))} \cong \mathbb{Z}_q.
\]

Proof. If \(p \) and \(q \) denote respectively the smallest prime divisors of \(|Aut(G)| \) and \(|K| \) then, by Theorem 2.3, we get

\[
\frac{p + q - 1}{pq} \leq \frac{1}{p} \left(1 + \frac{p - 1}{|K : L(K, Aut(G))|} \right)
\]

which gives \(|K : L(K, Aut(G))| \leq q \). Hence, \(\frac{K}{L(K, Aut(G))} \cong \mathbb{Z}_q \).

It is worth mentioning here that Theorem 2.6 generalizes [6, Theorem 2.4].
Theorem 2.7. If K is a subgroup of G and $\Pr(K, \text{Aut}(G)) = \frac{q^2 + p - 1}{pq}$, where p, q are the smallest prime divisors of $|\text{Aut}(G)|$ and $|K|$, respectively, then

$$\frac{K}{L(K, \text{Aut}(G))} \cong \mathbb{Z}_q \times \mathbb{Z}_q.$$

Further, if $|K|$ and $|\text{Aut}(G)|$ are even and $\Pr(K, \text{Aut}(G)) = \frac{5}{8}$, then

$$\frac{K}{L(K, \text{Aut}(G))} \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$$

Proof. If p and q denote respectively the smallest prime divisors of $|\text{Aut}(G)|$ and $|K|$, then, by Theorem 2.3, we get

$$\frac{q^2 + p - 1}{pq} \leq \frac{1}{p} \left(1 + \frac{p - 1}{|K : L(K, \text{Aut}(G))|}\right).$$

This gives $|K : L(K, \text{Aut}(G))| \leq q^2$. Since K is non-abelian, $|K : L(K, \text{Aut}(G))| \neq 1, q$. Hence, $\frac{K}{L(K, \text{Aut}(G))} \cong \mathbb{Z}_q \times \mathbb{Z}_q$.

The following result gives partial converses of Theorems 2.6 and 2.7, respectively.

Proposition 2.8. Let K be a subgroup of G. Let p, q be the smallest primes dividing $|\text{Aut}(G)|$, $|K|$, respectively, and $|\text{Aut}(G) : C_{\text{Aut}(G)}(a)| = p$ for all $a \in K \setminus L(K, \text{Aut}(G))$.

(a) If $\frac{K}{L(K, \text{Aut}(G))} \cong \mathbb{Z}_q$, then $\Pr(K, \text{Aut}(G)) = \frac{p^2 q - 1}{pq}$.

(b) If $\frac{K}{L(K, \text{Aut}(G))} \cong \mathbb{Z}_q \times \mathbb{Z}_q$, then $\Pr(K, \text{Aut}(G)) = \frac{q^2 + p - 1}{pq}$.

Proof. Since $|\text{Aut}(G) : C_{\text{Aut}(G)}(a)| = p$ for all $a \in K \setminus L(K, \text{Aut}(G))$, we have $|C_{\text{Aut}(G)}(a)| = \frac{|\text{Aut}(G)|}{p}$ for all $a \in K \setminus L(K, \text{Aut}(G))$. Therefore, by (1.2), we get

$$\Pr(K, \text{Aut}(G)) = \frac{|L(K, \text{Aut}(G))|}{|K|} + \frac{1}{|K|} \sum_{a \in K \setminus L(K, \text{Aut}(G))} |C_{\text{Aut}(G)}(a)|$$

Thus

$$\Pr(K, \text{Aut}(G)) = \frac{1}{p} \left(1 + \frac{p - 1}{|K : L(K, \text{Aut}(G))|}\right).$$

Hence, the results follow from (2.3).
For any subgroup K of G, let $m_K = \min\{|\text{orb}(a)| : a \in K \setminus L(K, \text{Aut}(G))\}$. The following theorem gives an upper bound for $\text{Pr}(K, \text{Aut}(G))$ involving m_K.

Theorem 2.9. If K is a subgroup of G, then

$$\text{Pr}(K, \text{Aut}(G)) \leq \frac{1}{m_K} \left(1 + \frac{m_K - 1}{|K : L(K, \text{Aut}(G))|} \right)$$

with equality if and only if $m_K = |\text{orb}(a)|$ for all $a \in K \setminus L(K, \text{Aut}(G))$.

Proof. Since $|\text{orb}(a)| \geq m_K$ for all $a \in K \setminus L(K, \text{Aut}(G))$, we have

$$\sum_{a \in K \setminus L(K, \text{Aut}(G))} \frac{1}{|\text{orb}(a)|} \leq \frac{|K| - |L(K, \text{Aut}(G))|}{m_K}.$$

Hence, the result follows from (2.1).

For any two integers $r \geq s$, we have

$$\frac{s}{r} \left(1 + \frac{s - 1}{|K : L(K, \text{Aut}(G))|} \right) \geq \frac{1}{r} \left(1 + \frac{r - 1}{|K : L(K, \text{Aut}(G))|} \right).$$

Therefore, if p is the smallest prime dividing $|\text{Aut}(G)|$ then $2 \leq p \leq m_K$ and hence, by (2.4), we have

$$\frac{1}{m_K} \left(1 + \frac{m_K - 1}{|K : L(K, \text{Aut}(G))|} \right) \leq \frac{1}{p} \left(1 + \frac{p - 1}{|K : L(K, \text{Aut}(G))|} \right) \leq \frac{1}{2} \left(1 + \frac{1}{|K : L(K, \text{Aut}(G))|} \right).$$

This shows that Theorem 2.9 gives better upper bound than the upper bounds obtained in [6, Theorem 2.3 (i)] and Theorem 2.1.

Note that if we replace $\text{Aut}(G)$ by the inner automorphism group $\text{Inn}(G)$ of G, then from (2.1), we get $\text{Pr}(K, \text{Inn}(G)) = \text{Pr}(K, G)$ where

$$\text{Pr}(K, G) = \frac{|\{(u, v) \in K \times G : uv = vu\}|}{|K||G|}.$$

Various properties of the ratio $\text{Pr}(K, G)$ are studied in [3] and [9]. We conclude this section showing that $\text{Pr}(K, \text{Aut}(G))$ is bounded by $\text{Pr}(K, G)$.

Proposition 2.10. If K is a subgroup of G then

$$\text{Pr}(K, \text{Aut}(G)) \leq \text{Pr}(K, G).$$
Proof. From [9, Lemma 1], we get

\[\Pr(K, G) = \frac{1}{|K|} \sum_{a \in K} \frac{1}{|Cl_G(a)|} \]

(2.5)

where \(Cl_G(a) = \{ \nu(a) : \nu \in Inn(G) \} \). Since \(Cl_G(a) \subseteq orb(a) \) for all \(a \in K \), the result follows from (1.3) and (2.5).

3. Some lower bounds

We begin this section with the following bound.

Theorem 3.1. If \(K \) a subgroup of \(G \), then

\[\Pr(K, Aut(G)) \geq \frac{|L(K, Aut(G))|}{|K|} + \frac{p(|K| - |X_K| - |L(K, Aut(G))|)}{|K||Aut(G)|} \]

where \(p \) is the smallest prime dividing \(|Aut(G)| \), \(X_K = \{ a \in K : C_{Aut(G)}(a) = \{ I \} \} \) and \(I \) is the identity of \(Aut(G) \).

Proof. Note that \(X_K \cap L(K, Aut(G)) = \emptyset \). Therefore

\[\sum_{a \in K} |C_{Aut(G)}(a)| = |X_K| + |Aut(G)||L(K, Aut(G))| + \sum_{a \in K \setminus (X_K \cup L(K, Aut(G)))} |C_{Aut(G)}(a)|. \]

If \(a \in K \setminus (X_K \cup L(K, Aut(G))) \) then \(\{ I \} < C_{Aut(G)}(a) \) which implies \(|C_{Aut(G)}(a)| \geq p. \) Therefore

\[\sum_{a \in K} |C_{Aut(G)}(a)| \geq |X_K| + |Aut(G)||L(K, Aut(G))| + p(|K| - |X_K| - |L(K, Aut(G))|). \]

(3.1)

Hence, the result follows from (1.2) and (3.1).

Now we obtain two lower bounds analogous to the lower bounds obtained in [9, Theorem A] and [8, Theorem 1].

Theorem 3.2. If \(K \) is a subgroup of \(G \), then

\[\Pr(K, Aut(G)) \geq \frac{1}{|S(K, Aut(G))|} \left(1 + \frac{|S(K, Aut(G))| - 1}{|K : L(K, Aut(G))|} \right) \]

with equality if and only if \(orb(a) = aS(K, Aut(G)) \) for all \(a \in K \setminus L(K, Aut(G)) \).
Proof. For all \(a \in K \setminus L(K, \text{Aut}(G)) \) and \(\nu \in \text{Aut}(G) \) we get \(\nu(a) = a[a, \nu] \in aS(K, \text{Aut}(G)) \). It follows that \(\text{orb}(a) \subseteq aS(K, \text{Aut}(G)) \) and hence
\[
|\text{orb}(a)| \leq |S(K, \text{Aut}(G))|
\]
for all \(a \in K \setminus L(K, \text{Aut}(G)) \). By (1.3), we have
\[
\Pr(K, \text{Aut}(G)) = \frac{1}{|K|} \left(\sum_{a \in L(K, \text{Aut}(G))} \frac{1}{|\text{orb}(a)|} + \sum_{a \in K \setminus L(K, \text{Aut}(G))} \frac{1}{|\text{orb}(a)|} \right)
\]
\[
\geq \frac{1}{|K||L(K, \text{Aut}(G))|} + \frac{1}{|K|} \sum_{a \in K \setminus L(K, \text{Aut}(G))} \frac{1}{|S(K, \text{Aut}(G))|}.
\]
Hence, the result follows.

The following corollary is a generalization of [1, Equation (3)].

Corollary 3.3. If \(K \) is a subgroup of \(G \), then
\[
\Pr(K, \text{Aut}(G)) \geq \frac{1}{|[K, \text{Aut}(G)]|} \left(1 + \frac{|[K, \text{Aut}(G)]| - 1}{|K : L(K, \text{Aut}(G))|} \right).
\]

Proof. The result follows from Theorem 3.2 and (2.4) noting that
\[
|[K, \text{Aut}(G)]| \geq |S(K, \text{Aut}(G))|.
\]

It is clear from the above proof that Theorem 3.2 gives better lower bound than Corollary 3.3.

Also
\[
\frac{1}{|[K, \text{Aut}(G)]|} \left(1 + \frac{|[K, \text{Aut}(G)]| - 1}{|K : L(K, \text{Aut}(G))|} \right) \geq \frac{|L(K, \text{Aut}(G))|}{|K|} + \frac{|L(K, \text{Aut}(G))|}{|K||\text{Aut}(G)|}.
\]

Hence, the lower bound given by Corollary 3.3 is better than that in [6, Theorem 2.3 (i)].

The following result is a generalization of [1, Proposition 3] which gives several equivalent conditions for equality in Corollary 3.3.

Proposition 3.4. If \(K \) is a subgroup of \(G \) then the following statements are equivalent.

(a) \(\Pr(K, \text{Aut}(G)) = \frac{1}{|[K, \text{Aut}(G)]|} \left(1 + \frac{|[K, \text{Aut}(G)]| - 1}{|K : L(K, \text{Aut}(G))|} \right) \).

(b) \(|\text{orb}(a)| = |[K, \text{Aut}(G)]| \) for all \(a \in K \setminus L(K, \text{Aut}(G)) \).

(c) \(\text{orb}(a) = a[K, \text{Aut}(G)] \) for all \(a \in K \setminus L(K, \text{Aut}(G)) \), and so \([K, \text{Aut}(G)] \subseteq L(K, \text{Aut}(G))\).
(d) $C_{\text{Aut}(G)}(a) \triangleleft \text{Aut}(G)$ and $\frac{\text{Aut}(G)}{C_{\text{Aut}(G)}(a)} \cong [K, \text{Aut}(G)]$ for all $a \in K \setminus L(K, \text{Aut}(G))$.

(e) $[K, \text{Aut}(G)] = \{a^{-1}\nu(a) : \nu \in \text{Aut}(G)\}$ for all $a \in K \setminus L(K, \text{Aut}(G))$.

Proof. First note that for all $a \in K$

(3.2) $\text{orb}(a) \subseteq a[K, \text{Aut}(G)]$.

Suppose that (a) holds. Then, by (1.3), we have

$$\sum_{a \in K \setminus L(K, \text{Aut}(G))} \left(\frac{1}{|\text{orb}(a)|} - \frac{1}{|[K, \text{Aut}(G)]|}\right) = 0.$$

Now using (3.2), we get (b). Also, if (b) holds then from (1.3), we have (a). Thus (a) and (b) are equivalent.

Suppose that (b) holds. Then for all $a \in K \setminus L(K, \text{Aut}(G))$ we have $|\text{orb}(a)| = |a[K, \text{Aut}(G)]|$. Hence, using (3.2) we get (c). If $[K, \text{Aut}(G)] \not\subseteq L(K, \text{Aut}(G))$ then there exist $z \in [K, \text{Aut}(G)] \setminus L(K, \text{Aut}(G))$. Therefore $\text{orb}(z) = z[K, \text{Aut}(G)] = [K, \text{Aut}(G)]$, a contradiction. Hence $[K, \text{Aut}(G)] \subseteq L(K, \text{Aut}(G))$. It can be seen that the mapping $f : \text{Aut}(G) \to [K, \text{Aut}(G)]$ given by $\nu \mapsto a^{-1}\nu(a)$, where a is a fixed element of $K \setminus L(K, \text{Aut}(G))$, is a surjective homomorphism with kernel $C_{\text{Aut}(G)}(a)$. Therefore (d) follows.

Since $|\text{Aut}(G)|/|C_{\text{Aut}(G)}(a)| = |\text{orb}(a)|$ for all $a \in K \setminus L(K, \text{Aut}(G))$ we have (b).

Thus (b), (c), and (d) are equivalent.

Also $\text{orb}(a) = a[K, \text{Aut}(G)]$ if and only if $a^{-1}\text{orb}(a) = [K, \text{Aut}(G)]$ for all $a \in K \setminus L(K, \text{Aut}(G))$, which gives the equivalence of (c) and (e). This completes the proof.

Let $M_K = \max\{|\text{orb}(a)| : a \in K \setminus L(K, \text{Aut}(G))\}$. The following theorem gives a lower bound for $\Pr(K, \text{Aut}(G))$ involving M_K.

Theorem 3.5. If K is a subgroup of G then

$$\Pr(K, \text{Aut}(G)) \geq \frac{1}{M_K} \left(1 + \frac{M_K - 1}{|K : L(K, \text{Aut}(G))|}\right)$$

with equality if and only if $M_K = |\text{orb}(a)|$ for all $a \in K \setminus L(K, \text{Aut}(G))$.

Proof. Since $|\text{orb}(a)| \leq M_K$ for all $a \in K \setminus L(K, Aut(G))$, we have

$$\sum_{a \in K \setminus L(K, Aut(G))} \frac{1}{|\text{orb}(a)|} \geq \frac{|K| - |L(K, Aut(G))|}{M_K}.$$

Hence, the result follows from (2.1).

For any $a \in K \setminus L(K, Aut(G))$ we have $\text{orb}(a) \subseteq aS(K, Aut(G))$ where $aS(K, Aut(G)) = \{ak : k \in S(K, Aut(G))\}$. Therefore $|S(K, Aut(G))| \geq M_K$ and hence, by (2.4), we have

$$\frac{1}{M_K} \left(1 + \frac{M_K - 1}{|K : L(K, Aut(G))|}\right) \geq \frac{1}{|S(K, Aut(G))|} \left(1 + \frac{|S(K, Aut(G))| - 1}{|K : L(K, Aut(G))|}\right).$$

This shows that Theorem 3.5 gives better lower bound than Theorem 3.2.

4. Autoisoclinism between pairs of groups

Hall [4], in the year 1940, introduced isoclinism between two groups. After many years, autoisoclinism between two groups was introduced by Moghad-dam et al. [7] in 2013. Let G_1 and G_2 be two groups. Suppose there exist isomorphisms $\phi : \frac{G_1}{L(G_1)} \rightarrow \frac{G_2}{L(G_2)}$, $\gamma : Aut(G_1) \rightarrow Aut(G_2)$ and $\beta : [G_1, Aut(G_1)] \rightarrow [G_2, Aut(G_2)]$ such that the diagram

$\begin{array}{cccc}
\frac{G_1}{L(G_1)} \times Aut(G_1) & \phi \times \gamma & \frac{G_2}{L(G_2)} \times Aut(G_2) \\
\uparrow & \downarrow \beta & \uparrow \\
[G_1, Aut(G_1)] & [G_1, Aut(G_1)] & [G_2, Aut(G_2)]
\end{array}$

commutes, where the maps $a_{(G_i, Aut(G_i))} : \frac{G_i}{L(G_i)} \times Aut(G_i) \rightarrow [G_i, Aut(G_i)]$ for $i = 1, 2$ are given by

$$a_{(G_i, Aut(G_i))}(x_iL(G_i), \nu_i) = [x_i, \nu_i].$$

Then the groups G_1 and G_2 are called autoisoclinic and the triple (ϕ, γ, β) is an autoisoclinism between them. A generalization of this notion of autoisoclinism between two groups is given below.

Definition 4.1. Let K_1 and K_2 be two subgroups of the groups G_1 and G_2 respectively. A pair of groups (K_1, G_1) is said to be autoisoclinic to another pair of groups (K_2, G_2) if there exist isomorphisms $\phi : \frac{K_1}{L(K_1, Aut(G_1))} \rightarrow \frac{K_2}{L(K_2, Aut(G_2))}$, $\gamma : Aut(K_1) \rightarrow Aut(K_2)$ and $\beta : [K_1, Aut(K_1)] \rightarrow [K_2, Aut(K_2)]$ such that the diagram

$\begin{array}{cccc}
\frac{K_1}{L(K_1)} \times Aut(K_1) & \phi \times \gamma & \frac{K_2}{L(K_2)} \times Aut(K_2) \\
\uparrow & \downarrow \beta & \uparrow \\
[K_1, Aut(K_1)] & [K_1, Aut(K_1)] & [K_2, Aut(K_2)]
\end{array}$

commutes, where the maps $a_{(K_i, Aut(K_i))} : \frac{K_i}{L(K_i)} \times Aut(K_i) \rightarrow [K_i, Aut(K_i)]$ for $i = 1, 2$ are given by

$$a_{(K_i, Aut(K_i))}(x_iL(K_i), \nu_i) = [x_i, \nu_i].$$
\[\frac{K_2}{L(K_2, \text{Aut}(G_2))}, \gamma : \text{Aut}(G_1) \to \text{Aut}(G_2) \text{ and } \beta : [K_1, \text{Aut}(G_1)] \to [K_2, \text{Aut}(G_2)] \]
such that the diagram

\[
\begin{array}{ccc}
\frac{K_1}{L(K_1, \text{Aut}(G_1))} \times \text{Aut}(G_1) & \xrightarrow{\phi \times \gamma} & \frac{K_2}{L(K_2, \text{Aut}(G_2))} \times \text{Aut}(G_2) \\
[K_1, \text{Aut}(G_1)] & \xrightarrow{\beta} & [K_2, \text{Aut}(G_2)]
\end{array}
\]

commutes, where the maps \(a_{(K_i, \text{Aut}(G_i))} : \frac{K_i}{L(K_i, \text{Aut}(G_i))} \times \text{Aut}(G_i) \to [K_i, \text{Aut}(G_i)] \)
for \(i = 1, 2 \) are given by

\[a_{(K_i, \text{Aut}(G_i))}(x_iL(K_i, \text{Aut}(G_i)), \nu_i) = [x_i, \nu_i]. \]

Such a triple \((\phi, \gamma, \beta)\) is said to be an autoisoclinism between the pairs \((K_1, G_1)\) and \((K_2, G_2)\).

Theorem 4.2. Let \(G_1 \) and \(G_2 \) be two finite groups with subgroups \(K_1 \) and \(K_2 \), respectively. If the pairs \((K_1, G_1)\) and \((K_2, G_2)\) are autoisoclinic, then

\[\text{Pr}(K_1, \text{Aut}(G_1)) = \text{Pr}(K_2, \text{Aut}(G_2)). \]

Proof. Consider the sets \(S = \{(x_1L(K_1, \text{Aut}(G_1)), \nu_1) \in \frac{K_1}{L(K_1, \text{Aut}(G_1))} \times \text{Aut}(G_1) : \nu_1(x_1) = x_1 \} \) and \(T = \{(x_2L(K_2, \text{Aut}(G_2)), \nu_2) \in \frac{K_2}{L(K_2, \text{Aut}(G_2))} \times \text{Aut}(G_2) : \nu_2(x_2) = x_2 \} \). Since \((K_1, G_1)\) is autoisoclinic to \((K_2, G_2)\) we have \(|S| = |T|\). Again, it is clear that

\[(4.1) \left| \{(x_1, \nu_1) \in K_1 \times \text{Aut}(G_1) : \nu_1(x_1) = x_1 \} \right| = |L(K_1, \text{Aut}(G_1))||S| \]

and

\[(4.2) \left| \{(x_2, \nu_2) \in K_2 \times \text{Aut}(G_2) : \nu_2(x_2) = x_2 \} \right| = |L(K_2, \text{Aut}(G_2))||T|. \]

Hence, the result follows from (1.1), (4.1), and (4.2).

Note that Theorem 4.2 is a generalization of [10, Lemma 2.5]. We conclude the paper by noting that the bounds obtained in Section 2 and Section 3 for \text{Pr}(K, \text{Aut}(G))\ are also applicable for \text{Pr}(K_1, \text{Aut}(G_1))\ if \((K_1, G_1)\) is autoisoclinic to \((K, G)\).
Acknowledgment

The authors would like to thank the referee for his/her valuable comments and suggestions. The first author would like to thank DST for the INSPIRE Fellowship.

References

