On r– dynamic coloring of the gear graph families

T. Deepa1 \textsuperscript{\textcopyright} orcid.org/0000-0002-5552-2362
M. Venkatachalamb2 \textsuperscript{\textcopyright} orcid.org/0000-0001-5051-4104
Dafik3 \textsuperscript{\textcopyright} orcid.org/0000-0003-0575-3039

Kongunadu College of Arts a College, Dept. of Mathematics, Coimbatore, TN, India.
1deepathangweio98@gmail.com; 2venkatmaths@gmail.com

3University of Jember; GIGAM; Research Group, Dept. of Mathematics Education, Jember, Indonesia.
3rd.dafik@unej.ac.id

Received: September 2019 | Accepted: April 2020

Abstract:

An r–dynamic coloring of a graph G is a proper coloring c of the vertices such that $|c(N(v))| \geq \min \{r, d(v)\}$, for each $v \in V(G)$. The r–dynamic chromatic number of a graph G is the minimum k such that G has an r–dynamic coloring with k colors. In this paper, we obtain the r–dynamic chromatic number of the middle, central and line graphs of the gear graph.

Keywords: r– dynamic coloring; gear graph; middle graph; central graph and line graph.

MSC (2020): 05C15.

Cite this article as (IEEE citation style):

Article copyright: © 2021 T. Deepa, M. Venkatachalamb, and Dafik. This is an open access article distributed under the terms of the Creative Commons License, which permits unrestricted use and distribution provided the original author and source are credited.
1. Introduction

Graphs in this paper are simple and finite. For undefined terminologies and notations see [5, 17]. Thus for a graph G, $\delta(G), \Delta(G)$ and $\chi(G)$ denote the minimum degree, maximum degree and chromatic number of G respectively. When the context is clear we write, δ, Δ and χ for brevity. For $v \in V(G)$, let $N(v)$ denote the set of vertices adjacent to v in G and $d(v) = |N(v)|$. The r-dynamic chromatic number was first introduced by Montgomery [14].

An r-dynamic coloring of a graph G is a map c from $V(G)$ to the set of colors such that (i) if $uv \in E(G)$, then $c(u) \neq c(v)$ and (ii) for each vertex $v \in V(G)$, $|c(N(v))| \geq \min \{r, d(v)\}$, where $N(v)$ denotes the set of vertices adjacent to v and $d(v)$ its degree and r is a positive integer.

The first condition characterizes proper colorings, the adjacency condition and second condition is double-adjacency condition. The r-dynamic chromatic number of a graph G, written $\chi_r(G)$, is the minimum k such that G has an r-dynamic proper k-coloring. The 1-dynamic chromatic number of a graph G is equal to its chromatic number. The 2-dynamic chromatic number of a graph has been studied under the name dynamic chromatic number denoted by $\chi_d(G)$ [1, 2, 3, 4, 8]. By simple observation, we can show that $\chi_r(G) \leq \chi_{r+1}(G)$, however $\chi_{r+1}(G) - \chi_r(G)$ can be arbitrarily large, for example $\chi(Petersen) = 2$, $\chi_d(Petersen) = 3$, but $\chi_3(Petersen) = 10$. Thus, finding an exact values of $\chi_r(G)$ is not trivially easy.

There are many upper bounds and lower bounds for $\chi_d(G)$ in terms of graph parameters. For example, for a graph G with $\Delta(G) \geq 3$, Lai et al.[8] proved that $\chi_d(G) \leq \Delta(G)+1$. An upper bound for the dynamic chromatic number of a d-regular graph G in terms of $\chi(G)$ and the independence number of G, $\alpha(G)$, was introduced in [7]. In fact, it was proved that $\chi_d(G) \leq \chi(G) + 2\log_2\alpha(G) + 3$. Taherkhani gave in [15] an upper bound for $\chi_2(G)$ in terms of the chromatic number, the maximum degree Δ and the minimum degree δ. i.e., $\chi_2(G) - \chi(G) \leq \left\lfloor (\Delta e)/\delta \log \left(2e\left(\Delta^2 + 1\right)\right)\right\rfloor$.

Li et al.proved in [10] that the computational complexity of $\chi_d(G)$ for a 3-regular graph is an NP-complete problem. Furthermore, Li and Zhou [9] showed that to determine whether there exists a 3-dynamic coloring, for a claw free graph with the maximum degree 3, is NP-complete.

N.Mohanapriya et al. [11, 12] studied the dynamic chromatic number for various graph families. Also, it was proven in [13] that the r-dynamic chromatic number of line graph of a helm graph H_n.

In this paper, we study $\chi_r(G)$, when $1 \leq r \leq \Delta$. We find the r- dynamic chromatic number of the middle, central and line graphs of the gear graph.
2. Preliminaries

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The middle graph $M(G)$ of G, denoted by $M(G)$, is defined as follows. The vertex set of $M(G)$ is $V(G) \cup E(G)$. Two vertices x, y of $M(G)$ are adjacent in $M(G)$ in one of the following cases: (i) x, y are in $E(G)$ and x, y are adjacent in G. (ii) x is in $V(G)$, y is in $E(G)$, and x, y are incident in G.

The central graph $C(G)$ of a graph G is obtained from G by adding an extra vertex on each edge of G, and then joining each pair of vertices of the original graph which were previously non-adjacent.

The line graph $L(G)$ of G denoted by $L(G)$ is the graph with vertices are the edges of G with two vertices of $L(G)$ adjacent whenever the corresponding edges of G are adjacent.

The gear graph is a wheel graph with a graph vertex added between each pair of adjacent graph vertices of the outer cycle. The gear graph G_n has $2n + 1$ nodes and $3n$ edges.

Let $V(G_n) = \{v\} \cup \{v_i : 1 \leq i \leq n\} \cup \{u_i : 1 \leq i \leq n\}$ and $E(G_n) = \{vv_i : 1 \leq i \leq n\} \cup \{u_iv_i : 1 \leq i \leq n\} \cup \{u_iu_{i+1} : 1 \leq i \leq n\}$ and the meaning of mod n is the obvious.

3. Main Theorem

Theorem 3.1. Let $n \geq 5$, $M(G_n)$ be the middle graph of a gear graph G_n and let $\Delta = \Delta(M(G_n))$. Then

$$
\chi_r(M(G_n)) = \begin{cases}
 n + 1, & 1 \leq r \leq 4 \\
 n + 2, & 5 \leq r \leq \Delta - 2 \\
 n + 4, & r = \Delta - 1 \text{ and } n \equiv 0 \mod 3 \\
 n + 5, & r = \Delta - 1 \text{ and } n \equiv 1 \mod 3 \\
 n + 4, & r = \Delta - 1 \text{ and } n \equiv 2 \mod 3 \\
 n + 5, & r = \Delta \text{ and } n \equiv 0 \mod 3 \\
 n + 7, & r = \Delta \text{ and } n \equiv 1 \mod 3 \\
 n + 6, & r = \Delta \text{ and } n \equiv 2 \mod 3
\end{cases}
$$

Proof. By the definition of middle graph, $V(M(G_n)) = V(G_n) \cup E(G_n) = \{v\} \cup \{v_i : 1 \leq i \leq n\} \cup \{u_i : 1 \leq i \leq n\} \cup \{e_i : 1 \leq i \leq n\} \cup \{s_i : 1 \leq i \leq 2n\}$.

The vertices v and $\{e_i : 1 \leq i \leq n\}$ induces a clique of order K_{n+1} in $M(G_n)$.
Thus, $\chi_\delta(M(G_n)) \geq n + 1$.

We divide the proof into some cases.

Case 1: For $1 \leq r \leq 4$

The r-dynamic $(n + 1)$ coloring is as follows:

For $1 \leq i \leq n$, assign the color c_i to e_i and assign the color c_{n+1} to v_i.

For $1 \leq i \leq n$, assign the color c_{n+1} to u_i and v_i.

- $|N(u_i)| = d(u_i) = 2 = \delta$,
- $|N(v_i)| = d(v_i) = 3$
- $|N(u)| = d(u) = n$,
- $|N(e_i)| = d(e_i) = n + 3$
- $|N(s_i)| = d(s_i) = 5$

For $1 \leq i \leq 2n$, assign the allowed colors to the vertex s_i and also it must satisfies the $r-$ adjacency condition.

- color the vertices $s_1, s_3, s_5, s_7, \cdots s_{2n-5}, s_{2n-3}, s_{2n-1}$ with colors $c_3, c_4, c_5, \cdots c_n, c_1, c_2$ (the order of assigned color is important).

- color the vertices $s_2, s_4, s_6, s_8, \cdots s_{2n-4}, s_{2n-2}, s_{2n}$ with colors $c_n, c_1, c_2, c_3, \cdots c_{n-3}, c_{n-2}, c_{n-1}$ (the order of assigned color is important).

We know that $|N(v)| = d(v) = n$, so we need the color $n + 1$.

It is easy to verify that adjacency and r-adjacency conditions are fulfilled.

Hence, $\chi_r(M(G_n)) = n + 1$, for $n \geq 5$ and $1 \leq r \leq 4$.

Case 2: For $5 \leq r \leq \Delta - 2$

The r-dynamic $(n + 2)$ coloring is as follows:

For $1 \leq i \leq n$, assign the color c_i to e_i and assign the color c_{n+1} to v_i.

For $1 \leq i \leq n$, assign the color c_{n+1} to u_i.

For $1 \leq i \leq 2n$, if any, assign the vertex s_i to one of the allowed colors - such color exists, because $|N(s_i)| = d(s_i) = 5$

- color the vertices $s_1, s_3, s_5, s_7, \cdots s_{2n-5}, s_{2n-3}, s_{2n-1}$ with colors $c_3, c_4, c_5, \cdots c_n, c_1, c_2$ (the order of assigned color is important).

- color the vertices $s_2, s_4, s_6, s_8, \cdots s_{2n-4}, s_{2n-2}, s_{2n}$ with colors $c_n, c_1, c_2, c_3, \cdots c_{n-3}, c_{n-2}, c_{n-1}$ (the order of assigned color is important).
• color the vertex \(v_i \) with the color \(c_{n+2} \).

Now \(|N(s_i)|\) satisfies the \(r \)-adjacency condition.
But \(d(e_i) = n + 3 \), so \(N(e_i) \) having \(n + 2 \) colors.
It is easy to verify that the \(r \)-adjacency condition is fulfilled.
Hence, \(\chi_r(M(G_n)) = n + 2 \), for \(n \geq 5 \) and \(5 \leq r \leq \Delta - 2 \).

Case 3 : For \(r = \Delta - 1 \) and \(n \equiv 0 \mod 3 \)

The \(r \)-dynamic \((n + 4)\) coloring is as follows:
For \(1 \leq i \leq n \), assign the color \(c_i \) to \(e_i \) and assign the color \(c_{n+1} \) to \(v \).
For \(1 \leq i \leq n \), assign the color \(c_{n+1} \) to \(u_i \).
For \(1 \leq i \leq n \), assign the color \(c_{n+2} \) to \(v_i \).
\(|N(e_i)|\) having \(n + 1 \) colors only. So we assign one new color to \(s_i \).

• color the vertices \(s_1, s_4, s_7, s_{10}, \ldots s_{2n-5}, s_{2n-2} \) with color \(c_{n+3} \).

• color the vertices \(s_2, s_5, s_8, s_{11}, \ldots s_{2n-4}, s_{2n-1} \) with colors \(c_{n+4} \).

Now \(s_3, s_6, s_9, \ldots s_{2n-3}, s_{2n} \) are uncolored. So assign these vertices to any one of the allowed colors-such color exists.

• color the vertices \(s_3, s_6, s_9, \ldots s_{2n-3}, s_{2n} \) with colors \(c_5, c_7, c_9, \ldots c_{n-1}, c_1, c_3 \) (the order of assigned color is important).

Now neighbours of \(e_i \) having \(n + 4 \) colors and an easy check shows that the \(r \)-adjacency condition is fulfilled.

Hence, \(\chi_r(M(G_n)) = n + 4 \), for \(n \geq 5 \), \(r = \Delta - 1 \) and \(n \equiv 0 \mod 3 \).

Case 4 : For \(r = \Delta - 1 \) and \(n \equiv 1 \mod 3 \)

The \(r \)-dynamic \((n + 5)\) coloring is as follows:
For \(1 \leq i \leq n \), assign the color \(c_i \) to \(e_i \) and assign the color \(c_{n+1} \) to \(v \).
For \(1 \leq i \leq n \), assign the color \(c_{n+1} \) to \(u_i \).
For \(1 \leq i \leq n \), assign the color \(c_{n+2} \) to \(v_i \).
\(N(e_i) \) having \(n + 1 \) colors. So we have to assign one new color to \(s_i \).

• color the vertices \(s_1, s_4, s_7, s_{10}, \ldots s_{2n-4} \) with color \(c_{n+3} \).

• color the vertices \(s_2, s_5, s_8, s_{11}, \ldots s_{2n-3} \) with color \(c_{n+4} \).
But neighbours of e_n having $n + 1$ colors only. So we have to assign a new color c_{n+5} to s_{2n-2}.

Now neighbours of e_i having $n + 2$ colors. But the vertices s_{2n-1} and s_{2n} are uncolored.

So we have to assign any one of the allowed colors to s_{2n-1} and s_{2n}.

- color the vertex s_{2n-1} with the color c_2 and color the vertex s_{2n} with the color c_3.

Now an easy check shows that the r-adjacency condition is fulfilled.

Hence, $\chi_r(M(G_n)) = n + 5$, for $n \geq 5$ and $r = \Delta - 1$ and $n \equiv 1 \mod 3$.

Case 5 : For $r = \Delta - 1$ and $n \equiv 2 \mod 3$

The r- dynamic $(n + 4)$ coloring is as follows:

- For $1 \leq i \leq n$, assign the color c_i to e_i and assign the color c_{n+1} to v.
- For $1 \leq i \leq n$, assign the color c_{n+1} to u_i.
- For $1 \leq i \leq n$, assign the color c_{n+2} to v_i.

Now $N(e_i)$ having $n + 1$ colors.so we have to assign one new color to s_i.

- color the vertices $s_1, s_4, s_7, s_{10}, \cdots s_{2n-3}$ with color c_{n+3}.
- color the vertices $s_2, s_5, s_8, s_11, \cdots s_{2n-2}$ with color c_{n+4}

But the vertices $s_3, s_6, s_9, \cdots s_{2n-4}, s_{2n-1}$ and s_{2n} are uncolored. So we have to assign any one of the allowed colors to these vertices.

- color the vertices $s_3, s_6, s_9, \cdots s_{2n-1}, s_{2n}$ with colors $c_4, c_1, c_7, c_3, \cdots, c_2, c_8$ respectively.(the order of assigned color is important).

Now an easy check shows that the r- adjacency condition is fulfilled.

Hence, $\chi_r(M(G_n)) = n + 4$, for $n \geq 5$, $r = \Delta - 1$ and $n \equiv 2 \mod 3$.

Case 6 : For $r = \Delta$ and $n \equiv 0 \mod 3$

The r- dynamic $(n + 5)$ coloring is as follows:

- For $1 \leq i \leq n$, assign the color c_i to e_i and assign the color c_{n+1} to v.
- For $1 \leq i \leq n$, assign the color c_{n+1} to u_i.
- For $1 \leq i \leq n$, assign the color c_{n+2} to v_i.
- For $r = \Delta$, we have to assign two new colors to neighbours of e_i.
On $r-$ dynamic coloring of the gear graph families

- color the vertices $s_1, s_4, s_7, s_{10}, \cdots s_{2n-5}, s_{2n-2}$ with color c_{n+3}
- color the vertices $s_2n, s_3, s_6, s_9, \cdots s_{2n-3}$ with color c_{n+4}
- color the vertices $s_2, s_5, s_8, s_{11}, \cdots s_{2n-1}$ with color c_{n+5}

Now an easy check shows that the $r-$adjacency condition is fulfilled for all the vertices.
Hence, $\chi_r(M(G_n)) = n + 5$, for $n \geq 5$, $r = \Delta$ and $n \equiv 0 \mod 3$.

Case 7 : For $r = \Delta$ and $n \equiv 1 \mod 3$

The $r-$ dynamic $(n + 7)$ coloring is as follows:
- For $1 \leq i \leq n$, assign the color c_i to e_i and assign the color c_{n+1} to v_i.
- For $1 \leq i \leq n$, assign the color c_{n+1} to v_i.
- For $1 \leq i \leq n$, assign the color c_{n+2} to v_i.
- For $r = \Delta$, we have to assign two new colors to neighbours of e_i.
 - color the vertices $s_1, s_4, s_7, s_{10}, \cdots s_{2n-4}$ with color c_{n+3}.
 - color the vertices $s_2n, s_3, s_6, s_9, \cdots s_{2n-5}$ with color c_{n+4}.
 - color the vertices $s_2, s_5, s_8, s_{11}, \cdots s_{2n-3}$ with color c_{n+5}.

But neighbours of e_n does not satisfies the r-adjacency condition.
So we have to assign two new colors to the vertices s_{2n-2} and s_{2n-1} respectively.
 - color the vertex s_{2n-2} with the color c_{n+6} and color the vertex s_{2n-1} with the color c_{n+7}.

So we have to assign any one of the allowed colors to s_{2n-1} and s_{2n}.
Now an easy check shows that the r-adjacency condition is fulfilled.
Hence, $\chi_r(M(G_n)) = n + 7$, for $n \geq 5$, $r = \Delta$ and $n \equiv 1 \mod 3$.

Case 8 : For $r = \Delta$ and $n \equiv 2 \mod 3$

The $r-$ dynamic $(n + 6)$ coloring is as follows:
- For $1 \leq i \leq n$, assign the color c_i to e_i and assign the color c_{n+1} to v_i.
- For $1 \leq i \leq n$, assign the color c_{n+1} to u_i.
- For $1 \leq i \leq n$, assign the color c_{n+2} to v_i.
- For $r = \Delta$, we have to assign two new colors to neighbours of e_i.
• color the vertices \(s_1, s_4, s_7, s_{10}, \ldots, s_{2n-3} \) with color \(c_{n+3} \).

• color the vertices \(s_{2n}, s_3, s_6, s_9, \ldots, s_{2n-4} \) with color \(c_{n+4} \).

• color the vertices \(s_2, s_5, s_8, s_{11}, \ldots, s_{2n-2} \) with color \(c_{n+5} \).

Now neighbours of \(e_n \) does not satisfies the \(r \)- adjacency condition.

• color the vertex \(s_{2n-1} \) with the new color \(c_{n+6} \).

Now an easy check shows that the \(r \)- adjacency condition is fulfilled. Hence, \(\chi_r(M(G_n)) = n + 6 \), for \(n \geq 5 \), \(r = \Delta \) and \(n \equiv 2 \mod\ 3 \). \(\square

\textbf{Theorem 3.2.} Let \(n \geq 5 \), \(C(G_n) \) be the central graph of a Gear graph \(G_n \) and let
\(\Delta = \Delta(C(G_n)) \). Then

\[
\chi_r(C(G_n)) = \begin{cases}
 n + 1, & r = 1 \\
 2n + 1, & 0 \leq r \leq \Delta - 2 \\
 2n + 2, & r = \Delta - 1 \\
 3n + 3, & r = \Delta
\end{cases}
\]

\textbf{Proof.} By the definition of central graph, subdividing each edge of \(G_n \) exactly once and then joining each pair of vertices of \(G_n \) which were non-adjacent.

Let \(V(C(G_n)) = V(G_n) \cup E(G_n) = \{v\} \cup \{v_i : 1 \leq i \leq n\} \cup \{u_i : 1 \leq i \leq n\} \cup \{e_i : 1 \leq i \leq n\} \cup \{s_i : 1 \leq i \leq 2n\} \)

We divide the proof into some cases.

\textbf{Case 1 :} For \(r = 1 \)

The \(r \)- dynamic \((n + 1) \)- coloring is as follows:

For \(1 \leq i \leq n \), assign the color \(c_i \) to \(v_i \) and \(u_i \).

For \(1 \leq i \leq n - 1 \), assign the color \(c_{i+1} \) to \(e_i+1 \) and assign the color \(c_n \) to \(e_1 \).

\[
|N(u_i)| = d(u_i) = 2n \\
|N(v_i)| = d(v_i) = 2n \\
|N(v)| = d(v) = 2n \\
|N(e_i)| = d(e_i) = 2 \\
\text{and } |N(s_i)| = d(s_i) = 2
\]

For \(1 \leq i \leq 2n \), assign the color \(c_{n+1} \) to the vertex \(s_i \) and assign the color \(c_{n+1} \) to \(v \).
Now an easy check shows that the $r-$ adjacency condition is fulfilled. Hence, $\chi_r(C(G_n)) = n + 1$, for $r = 1$.

Case 2: For $\delta \leq r \leq \Delta - 2$

The $r-$ dynamic $(2n + 1)-$ coloring is as follows:

For $1 \leq i \leq n$, assign the color c_i to v_i.

For $1 \leq i \leq 2n$, assign the color c_{n+1} to s_i.

For $1 \leq i \leq n - 1$, assign the color c_i to e_{i+1} and assign the color c_n to e_1 and also assign the color c_{n+1} to v.

- Color the vertices $u_1, u_2, u_3, \ldots, u_{n-1}, u_n$ with colors $c_{n+2}, c_{n+3}, \ldots, c_{2n}, c_{2n+1}$ (the order of assigned color is important).

Now an easy check shows that the $r-$adjacency condition is fulfilled. Hence, $\chi_r(C(G_n)) = 2n + 1$, for $\delta \leq r \leq \Delta - 2$.

Case 3: For $r = \Delta - 1$

The $r-$ dynamic $(2n + 2)-$ coloring is as follows:

For $1 \leq i \leq n$, assign the color c_i to v_i and assign the color c_{n+1} to v.

For $1 \leq i \leq n - 1$, assign the color c_i to e_{i+1} and assign the color c_n to e_1.

- Color the vertices $u_1, u_2, u_3, \ldots, u_{n-1}, u_n$ with colors $c_{n+2}, c_{n+3}, \ldots, c_{2n}, c_{2n+1}$ (the order of assigned color is important).

- Color the vertices $s_2, s_4, s_6, \ldots, s_{2n-2}, s_{2n}$ with color c_{n+1}.

- Color the vertices $s_1, s_3, s_5, \ldots, s_{2n-3}, s_{2n-1}$ with colors c_{2n+2}.

Now an easy check shows that the $r-$adjacency condition is fulfilled. Hence, $\chi_r(C(G_n)) = 2n + 2$, for $r = \Delta - 1$.

Case 4: For $r = \Delta$

The $r-$ dynamic $(3n + 3)-$ coloring is as follows:

For $1 \leq i \leq n$, assign the color c_i to v_i and assign the color c_{n+1} to v.

- Color the vertices $u_1, u_2, u_3, \ldots, u_{n-1}, u_n$ with colors $c_{n+2}, c_{n+3}, \ldots, c_{2n}, c_{2n+1}$ (the order of assigned color is important).
• Color the vertices \(s_1, s_3, s_5, \ldots s_{2n-3}, s_{2n-1}\) with colors \(c_{2n+2}\) and color the vertices \(s_2, s_4, s_6, \ldots s_{2n-2}, s_{2n}\) with color \(c_{2n+3}\).

• Color the vertices \(e_1, e_2, e_3, \ldots e_{n-1}, e_n\) with colors \(c_{2n+4}, c_{2n+5}, c_{2n+6} \ldots c_{3n+2}, c_{3n+3}\) respectively.(the order of assigned color is important).

Now an easy check shows that the \(r\)-adjacency condition is fulfilled. Hence, \(\chi_r(C(G_n)) = 3n + 3\), for \(r = \Delta\) \(\square\)

Result:
Let us consider the line graphs built on the base of Gear graph.

By the definition of line graph

\[V(L(G_n)) = E(G_n) = \{e_i : 1 \leq i \leq n\} \cup \{s_i : 1 \leq i \leq 2n\} \]

Note that \(d(e_i) = n + 1, d(s_i) = 3\). Hence \(\delta(L(G_n)) = 3\).

Next, observe that the vertices \(\{e_1, e_2, e_3, \ldots, e_n\}\) induces a clique \(K_n\) in \(L(G_n)\). Thus,

\[\chi_\delta(L(G_n)) \geq n\]

for any \(r\). Let us start with \(r = \delta\).

Proposition 3.3. Let \(n \geq 5\). Let \(L(G_n)\) be the line graph of a Gear graph \(G_n\). Then \(\chi_\delta(L(G_n)) = n\).

Proof. Due to (1), we have \(\chi_\delta(L(G_n)) \geq n\).

So, we need to fix only appropriate coloring.

For \(1 \leq i \leq n\), assign the color \(i\) to \(e_i\). Next, assign the colors to \(s_i\) such that partial coloring is proper and the \(r\)-adjacency condition for \(r = \delta\) is also fulfilled.

That is we should assign one of the allowed colors from \(\{1, 2, \ldots n\}\) to vertex \(s_i\) of degree 3, \(1 \leq i \leq n\).

The coloring we obtained is \(\delta\)– dynamic coloring of \(L(G_n)\).

The result from proposition can be extended to \(r\)-dynamic coloring for line graph of Gear graph for all \(r\), where \(1 \leq r \leq \Delta\). \(\square\)

Theorem 3.4. Let \(n \geq 6\), \(L(G_n)\) be the line graph of a Gear graph \(G_n\) and let \(\Delta = \Delta(L(G_n))\). Then
\[
\chi_r(L(G_n)) = \begin{cases}
 n, & 1 \leq r \leq n - 1 \\
n + 2, & r = n \text{ and } n \not\equiv 1 \mod 3 \\
n + 3, & r = n \text{ and } n \equiv 1 \mod 3 \\
n + 3, & r = n + 1 = \Delta, \ n \geq 5 \text{ and } 2n \equiv 0 \mod 3 \\
n + 4, & r = n + 1 = \Delta, \ n \geq 5 \text{ and } 2n \equiv 1 \mod 3 \\
n + 5, & r = n + 1 = \Delta, \ n \geq 5 \text{ and } 2n \equiv 2 \mod 3
\end{cases}
\]

Proof. We divide the proof into some cases.

Case 1: For \(1 \leq r \leq n - 1\)

The \(r\)-dynamic \((n)\)-coloring is as follows:

\[
|N(e_i)| = d(e_i) = n - 1, \\
|N(s_i)| = d(s_i) = 3 = \delta.
\]

Now an easy check shows that the \(r\)-adjacency condition is fulfilled.

Hence, \(\chi_r(L(G_n)) = n\), for \(1 \leq r \leq n - 1\)

Case 2: For \(r = n\) and \(n \not\equiv 1 \mod 3\)

The \(r\)-dynamic \((n + 2)\)-coloring is as follows:

- Color vertex \(e_i\) with color \(i\), \(1 \leq i \leq n\).

Let us notice that vertices adjacent to each vertex \(e_i\) must be colored with \(r = n\) different colors. After this step each vertex \(e_i\) has \(n - 1\) neighbours in different colors and exactly its two neighbours are uncolored: \(s_{i-1}, s_i\).

We have to color them with at least one new color to vertex \(s_i\) to fulfill \(r\)-adjacent condition for vertex \(s_i\). So \(\chi_r(L(G_n)) \geq n + 2\).

To color vertices \(s_i, 1 \leq i \leq n\).

Now the number of vertices \(s_i\), forming a cycle \(C_{2n}\), is not divisible by 3, so color the vertices \(s_1, s_4, s_7, s_{10}, \ldots, s_{2n-2}\) with color \(n + 1\).

Now another neighbour of \(e_1\) has uncolored. So we have to assign one of the allowed colors \(c_1, c_2, c_3, \ldots, c_n\) to vertex \(s_{2n}\).

Next, the two neighbours of \(e_2\) are uncolored. We have to color them with at least one new color to vertex \(s_2\) to fulfill \(r\)-adjacent condition for vertex \(e_i\).

- color the vertices \(s_2, s_5, s_8, \ldots, s_{2n-1}\) with color \(n + 2\).
Now the neighbours of e_i has at least n colors.
Now $s_3, s_6, s_9, s_{12}, \cdots s_{2n}$ vertices get any one of the allowed colors $c_1, c_2, c_3, \cdots c_n$.
Now an easy check shows that the r-adjacency condition is fulfilled.
Hence, $\chi_r(L(G_n)) = n + 2$, for $r = n$ and $n \not\equiv 1 \mod 3$

Case 3 : For $r = n$ and $n \equiv 1 \mod 3$
The r-dynamic $(n + 3)$-coloring is as follows:

- Color vertex e_i with color i, $1 \leq i \leq n$.

Let us notice that vertices adjacent to each vertex e_i must be colored with $r = n$ different colors. After this step each vertex e_i has $n - 1$ neighbours in different colors and exactly its two neighbours are uncolored: s_{i-1}, s_i.

We have to color them with at least one new color to vertex s_i to fulfill r-adjacent condition for vertex s_i, so $\chi_r(L(G_n)) \geq n + 2$.

To color vertices s_i, $1 \leq i \leq n$.

Now the number of vertices s_i, forming a cycle C_{2n}, is not divisible by 3, so color the vertices $s_1, s_4, s_7, s_{10}, \cdots s_{2n-4}$ with color $n + 1$.

Now another neighbour of e_1 has uncolored. So we have to assign one of the allowed colors $1, 2, 3, \cdots n$ to vertex s_{2n}.

Next, the two neighbours of e_2 are uncolored. We have to color them with at least one new color to vertex s_2 to fulfill r-adjacent condition for vertex e_i.

- Color the vertices $s_2, s_5, s_8, \cdots s_{2n-3}$ with color $n + 2$.

But the neighbours of e_n having only $n - 1$ colors. So we have to assign any one of the new color to the vertices s_{2n-1}, s_{2n-2}.

Suppose to assign color $n + 3$ to s_{2n-2}, next assign the uncolored vertices to the any one of the allowed colors $1, 2, \cdots n$ to fulfill r-adjacent condition for vertex e_i.

Now an easy check shows that the r-adjacency condition is fulfilled.
Hence, $\chi_r(L(G_n)) = n + 3$, for $r = n$ and $n \equiv 1 \mod 3$

Case 4 : $r = n + 1 = \Delta$ and $2n \equiv 0 \mod 3$
The r dynamic $(n + 3)$-coloring is as follows:

- Color the vertex e_i with color i, $1 \leq i \leq n$.
It is clear that to color $2n$ remaining vertices: s_i we have to use colors $n, \cdots \chi_r$.
we have to still take care of the r-adjacency condition for all vertices.

The r-adjacency condition for vertices $s_i, 1 \leq i \leq n$, we must use atleast two new colors to vertex s_i. So $\chi_r(L(G_n)) \geq n + 3$.

- Color the vertices $s_1, s_4, s_7, s_{10}, \cdots s_{2n-2}$ with color $n+1$.
- Color the vertices $s_3, s_6, s_9, s_{12}, \cdots s_{2n}$ with new color $n+2$.

Now the vertex s_2 is uncolored. So we have to assign the new color $n + 3$ to the vertices $s_2, s_5, s_8, \cdots s_{2n-1}$.

Now an easy check shows that the r-adjacency condition is fulfilled.
Hence, $\chi_r(L(G_n)) = n + 3$, for $r = n + 1 = \Delta$ and $2n \equiv 0 \mod 3$.

Case 5: $r = n + 1 = \Delta$ and $2n \equiv 1 \mod 3$

The r dynamic $(n+4)$-coloring is as follows:

- Color the vertex e_i with color i, $1 \leq i \leq n$.

It is clear that to color $2n$ remaining vertices: s_i we have to use colors $n, \cdots \chi_r$.
we have to still take care of the r-adjacency condition for all vertices.
The r-adjacency condition for vertices $s_i, 1 \leq i \leq n$, we must use atleast two new colors to vertex s_i.

- Color the vertices $s_1, s_4, s_7, s_{10}, \cdots s_{2n-3}$ with color $n+1$.
- Color the vertices $s_2n, s_3, s_6, s_9, s_{12}, \cdots s_{2n-4}$ with new color $n+2$.

Now the vertices $s_2, s_5, s_8, \cdots s_{2n-2}, s_{2n-1}$ are uncolored.
- Color the vertices $s_2, s_5, s_8, \cdots s_{2n-1}$ with the color $n + 3$.

Now s_{2n-2} is uncolored. So we have to assign the new color $n + 4$ to s_{2n-2}.

Now an easy check shows that the r-adjacency condition is fulfilled.
Hence, $\chi_r(L(G_n)) = n + 4$, for $r = n + 1 = \Delta$ and $2n \equiv 1 \mod 3$.

Case 6: $r = n + 1 = \Delta$ and $2n \equiv 2 \mod 3$

The r dynamic $(n+5)$-coloring is as follows:
• color the vertex e_i with color i, $1 \leq i \leq n$.

It is clear that to color $2n$ remaining vertices: s_i, we have to use colors n, \cdots, χ_r.
we have to still take care of the r- adjacency condition for all vertices. The r- adjacency condition for vertices $s_i, 1 \leq i \leq n$, we must use atleast two new colors to vertex s_i.

• Color the vertices $s_1, s_4, s_7, s_{10}, \cdots s_{2n-4}$ with color $n + 1$.
• color the vertices $s_2, s_3, s_6, s_9, s_{12}, \cdots s_{2n-5}$ with new color $n + 2$.
• color the vertices $s_2, s_5, s_8, \cdots s_{2n-3}$ with the color $n + 3$.

Now s_{2n-2}, s_{2n-1} are uncolored.
So we have to assign the new color $n + 4$ to s_{2n-2} and to assign the new color $n + 5$ to s_{2n-1}.
Now an easy check shows that the r–adjacency condition is fulfilled. Hence, $\chi_r(L(G_n)) = n + 5$, for $r = n + 1 = \Delta$ and $2n \equiv 2 \mod 3$.

In all cases the order of the assigned colors is important. One can verify that the adjacency and r-adjacency conditions are fulfilled.

□

References

