Scielo RSS <![CDATA[Biological Research]]> vol. 52 num. lang. <![CDATA[SciELO Logo]]> <![CDATA[Derlin1 functions as an oncogene in cervical cancer via AKT/mTOR signaling pathway]]> Abstract Background: Cervical cancer (CC) ranks third in the morbidity and mortality of female cancer around the world. Derlin1 has been found to be overexpressed in several human cancers. However, it is still unclear about its roles in CC. The research aims to explore the relationship between Derlin1 and CC. Methods: We purchased a human CC tissues microarray, which contained CC tissues and corresponding para-cancerous tissues from 93 patients with primary cervical squamous cell carcinoma. Immunohistochemical staining was used to confirm the expression of Derlin1 in these tissues. And we detected the differential expression of Derlin1 in cervical cancer cell lines and normal cervical epithelial cells (H8). Further, the cervical cancer cell lines SiHa and C33A were used as an in vitro model, which was down-regulated the expression of Derlin1 using siRNA interference technology. The effects of Derlin1 down-regulating in CC cell lines on cell proliferation and migration were detected by CCK8 assay and transwell assay, respectively. The effect of Derlin1 down-regulating on apoptosis was analyzed by flow cytometry, and apoptosis-related proteins were detected using western blotting. In-depth mechanisms were studied using western blotting. In addition, the effects of Derlin1 up-regulating in normal cervical epithelial cells also were exposed. Results: Derlin1 was significantly elevated in CC tissues (81.7%, 76/93), and the expression of Derlin 1 was positively correlated with the tumor size, pathological grade, and lymph node metastasis in CC patients. And Derlin 1 was high expressed in cervical cancer cell lines compared to H8 cells. Knockdown of Derlin 1 in cervical cancer cell lines inhibited cell proliferation and migration. Moreover, knockdown of Derlin 1 induced apoptosis and affected the expression of apoptosis-related proteins, including Bcl-2, Bax, Bim, caspase3 and caspase9. Further experiments showed that AKT/mTOR signal pathway might be involve in this processes that knockdown of Derlin 1 inhibited the expression of p-AKT and p-mTOR. Over-expression of Derlin 1 in H8 cells promoted cell proliferation and migration via up-regulated the expression of p-AKT and p-mTOR. Conclusion: Derlin 1 is an oncogene in CC via AKT/mTOR pathway. It might be a potential therapeutic target for CC. <![CDATA[Isolation of dihydrobenzofuran derivatives from ethnomedicinal species <em>Polygonum barbatum</em> as anticancer compounds]]> Abstract Background: Ethnomedicinally, the family Polygonaceae is famous for the management of cancer. Various species of this family have been reported with anticancer potentials. This study was designed to isolate anticancer compounds from ethnomedicinally important species Polygonum barbatum. Methods: The column chromatography was used for the isolation of compounds from the solvent fraction of P. barbatum. The characterization of isolated compounds was performed by various spectroscopic techniques like UV, IR, mass spectrometry and 1D-2D NMR spectroscopy. Keeping in view the ethnomedicinal importance of the family, genus and species of P barbatum, the isolated compounds (1–3) were screened for anticancer potentials against oral cancer (CAL-27) and lungs cancer (NCI H460) cell lines using MTT assay. Active compound was further investigated for apoptosis by using morphological changes and flow cytometry analysis. In vivo anti-angiogenic study of the isolated compounds was also carried using chorioallantoic membrane assay. Docking studies were carried out to explore the mechanism of anticancer activity. Results: Three dihydrobenzofuran derivatives (1–3) have been isolated from the ethyl acetate fraction of P. barbatum. The structures of isolated compounds were elucidated as methyl (2S,3S)-2-(3,4-dimethoxyphenyl)-4-((E)-3-ethoxy-3-oxoprop-1-en-1-yl)-7-methoxy-2,3-dihydrobenzo-furan-3-carboxylate (1), (E)-3-((2S,3S)-2-(3,4-dimethoxyphenyl)-7-methoxy-3-(methoxy carbonyl)-2,3-dihydrobenzofuran-4-yl)acrylic acid (2) and (2S,3 S)-4-((E)-2-carboxyvinyl)-2-(3,4-dimethoxyphenyl)-7-hydroxy-2,3-dihydrobenzofuran-3-carboxylic acid (3). The compound 1 was found to be more potent with IC50 of 48.52 ± 0.95 and 53.24 ± 1.49 against oral cancer cells as compared to standard drug (IC50 = 97.76 ± 3.44 μM). Both compound also inhibited lung cancer cells but at higher concentrations. Morphological and flow cytometry analysis further confirms that compound 1 induces apoptosis after 24 to 48 h treatment. In antiangiogenesis assay, compounds 1, 2 and 3 exhibited IC50 values of 8.2 ± 1.1,13.4 ± 1.1 and 57.7 ± 0.3 μM respectively. The docking studies revealed that the compounds under study have the potential to target the DNA and thymidylate synthase (TS). Conclusion: Based on its overwhelming potency against the tested cell lines and in angiogenesis assay, compound 1 can be further evaluated mechanistically and can be developed as anticancer drug candidate. <![CDATA[ErbB1 and ErbB3 co-over expression as a prognostic factor in gastric cancer]]> Abstract Background: Epidermal growth factor receptor family members such as ErbB1 and ErbB3 are involved in tumor progression and metastasis. Although, there are various reports about the prognostic value of EGFR members separately in gastric cancer, there is not any report about the probable correlation between ErbB1 and ErbB3 co-expression and gastric cancer prognosis. In present study, we assessed the correlation between ErbB1 and ErbB3 co-overexpression (in the level of mRNA and protein expression) and gastric cancer prognosis for the first time. Methods: ErbB1 and ErbB3 expressions were analyzed by immunohistochemistry and real-time PCR in 50 patients with gastric cancer. Parametric correlations were done between the ErbB1 and ErbB3 expression and clinicopathological features. Multivariate and logistic regression analyses were also done to assess the roles of ErbB1 and ErbB3 in tumor prognosis and survival. Results: There were significant correlations between ErbB1/ErbB3 co-overexpression and tumor size (p = 0.026), macroscopic features (p &lt; 0.05), tumor differentiation (p &lt; 0.05), stage of tumor (p &lt; 0.05), and recurrence (p &lt; 0.05). Moreover, ErbB1/ErbB3 co-overexpression may predict the survival status of patients (p &lt; 0.05). Conclusion: ErbB1 and ErbB3 co-overexpression is accompanied with the poor prognosis and can be used efficiently in targeted therapy of gastric cancer patients. <![CDATA[Identification of the targets of hematoporphyrin derivative in lung adenocarcinoma using integrated network analysis]]> Abstract Background: Hematoporphyrin derivative (HPD) has a sensibilization effect in lung adenocarcinoma. This study was conducted to identify the target genes of HPD in lung adenocarcinoma. Methods: RNA sequencing was performed using the lung adenocarcinoma cell line A549 after no treatment or treatment with X-ray or X-ray + HPD. The differentially expressed genes (DEGs) were screened using Mfuzz package by noise-robust soft clustering analysis. Enrichment analysis was carried out using “BioCloud” online tool. Protein–protein interaction (PPI) network and module analyses were performed using Cytoscape software. Using WebGestalt tool and integrated transcription factor platform (ITFP), microRNA target and transcription factor (TF) target pairs were separately predicted. An integrated regulatory network was visualized with Cytoscape software. Results: A total of 815 DEGs in the gene set G1 (continuously dysregulated genes along with changes in processing conditions [untreated—treated with X-ray—X-ray + treated with HPD]) and 464 DEGs in the gene set G2 (significantly dysregulated between X-ray + HPD-treated group and untreated/X-ray-treated group) were screened. The significant module identified from the PPI network for gene set G1 showed that ribosomal protein L3 (RPL3) gene could interact with heat shock protein 90 kDa alpha, class A member 1 (HSP90AA1). TFs AAA domain containing 2 (ATAD2) and protein inhibitor of activated STAT 1 (PIAS1) were separately predicted for the genes in gene set G1 and G2, respectively. In the integrated network for gene set G2, ubiquitin-specific peptidase 25 (USP25) was targeted by miR-200b, miR-200c, and miR-429. Conclusion: RPL3, HSP90AA1, ATAD2, and PIAS1 as well as USP25, which is targeted by miR-200b, miR-200c, and miR-429, may be the potential targets of HPD in lung adenocarcinoma. <![CDATA[Isolation and partial characterization of a new moderate thermophilic <em>Albidovulum</em> sp. SLM16 with transaminase activity from Deception Island, Antarctica]]> Abstract Background: A moderately thermophilic, slightly halophilic, aerobic, Gram-stain negative, bacterial strain, SLM16, was isolated from a mixed of seawater–sand-sediment sample collected from a coastal fumarole located in Whalers Bay, Deception Island, Antarctica. The aim was to screen for thermophilic microorganisms able to degrade primary amines and search for amine transaminase activity for potential industrial application. Results: Identification and partial characterization of the microorganism SLM16 were carried out by means of morphological, physiological and biochemical tests along with molecular methods. Cells of strain SLM16 were non-motile irregular rods of 1.5–2.5 μm long and 0.3–0.45 μm wide. Growth occurred in the presence of 0.5–5.5% NaCl within temperature range of 35–55 °C and pH range of 5.5–9.5, respectively. The DNA G+C composition, estimated from ftsY gene, was 66% mol. Phylogenetic analysis using de 16S rRNA gene sequence showed that strain SLM16 belongs to the marine bacterial genus Albidovulum. Conclusion: Strain SLM16 is a moderate thermophilic Gram negative microorganisms which belongs to the marine bacterial genus Albidovulum and is closely related to Albidovulum inexpectatum species based on phylogenetic analysis. Additionally, amine-transaminase activity towards the arylaliphatic amine α-methylbenzylamine was detected. <![CDATA[RNA editing analysis of ATP synthase genes in the cotton cytoplasmic male sterile line H276A]]> Abstract Background: Pollen development is an energy-consuming process that particularly occurs during meiosis. Low levels of adenosine triphosphate (ATP) may cause cell death, resulting in CMS (cytoplasmic male sterility). DNA sequence differences in ATP synthase genes have been revealed between the N- and S-cytoplasms in the cotton CMS system. However, very few data are available at the RNA level. In this study, we compared five ATP synthase genes in the H276A, H276B and fertile F1 (H276A/H268) lines using RNA editing, RNA blotting and quantitative real time-PCR (qRT-PCR) to explore their contribution to CMS. A molecular marker for identifying male sterile cytoplasm (MSC) was also developed. Results: RNA blotting revealed the absence of any novel orf for the ATP synthase gene sequence in the three lines. Forty-one RNA editing sites were identified in the coding sequences. RNA editing showed that proteins had 32.43% higher hydrophobicity and that 39.02% of RNA editing sites had proline converted to leucine. Two new stop codons were detected in atp6 and atp9 by RNA editing. Real-time qRT-PCR data showed that the atp1, atp6, atp8, and atp9 genes had substantially lower expression levels in H276A compared with those in H276B. By contrast, the expression levels of all five genes were increased in F1 (H276A/H268). Moreover, a molecular marker based on a 6-bp deletion upstream of atp8 in H276A was developed to identify male sterile cytoplasm (MSC) in cotton. Conclusions: Our data substantially contributes to the understanding of the function of ATP synthase genes in cotton CMS. Therefore, we suggest that ATP synthase genes might be an indirect cause of cotton CMS. Further research is needed to investigate the relationship among ATP synthase genes in cotton CMS. <![CDATA[Vitexin induces apoptosis through mitochondrial pathway and PI3K/Akt/mTOR signaling in human non-small cell lung cancer A549 cells]]> Abstract Background: Currently, the prognosis of patients with non-small cell lung cancer (NSCLC) remains dismal; hence, it is critical to identify effective anti-NSCLC agents with limited side effects. This study aimed to evaluate the therapeutic potential of flavonoid compound vitexin in human NSCLC cells and the underlying mechanisms. Results: The experimental results indicated that vitexin reduced the viability of A549 cells in a dose-dependent manner with nearly no toxicity against normal human bronchial epithelial 16HBE cells. Vitexin also dose-dependently increased A549 cell apoptosis, accompanied by the decreased Bcl-2/Bax ratio and the increased expression of cleaved caspase-3. Moreover, the in vivo anticancer activity of vitexin was further determined in nude mice bearing A549 cells. In addition, vitexin induced the release of cytochrome c from the mitochondria to the cytosol and the loss of mitochondrial membrane potential. Vitexin also significantly reduced the levels of p-PI3K, p-Akt and p-mTOR, and the pro-apoptotic effect of vitexin on A549 cells was partly blocked by SC79, an Akt activator. Conclusions: Accordingly, we believed that vitexin could be used as a potential therapeutic agent for the treatment of NSCLC in the future. <![CDATA[Intestinal transcriptional profiling reveals fava bean-induced immune response in DBA/1 mice]]> Abstract Background: Fava beans (FBs) have long been used as food, and their principal disadvantage is derived from their haemotoxicity. We hypothesized that FB ingestion alters the intestinal gene expression pattern, thereby inducing an immune response. Results: In-depth sequence analysis identified 769 differentially expressed genes (DEGs) associated with the intestine in FB-treated DBA/1 mouse intestines. The identified genes were shown to be associated with biological processes (such as response to stimulus and immune system processes), human disease pathways (such as infectious diseases, endocrine and metabolic diseases, and immune diseases), and organismal system pathways (such as the digestive system, endocrine system, environmental adaptation, and immune system). Moreover, plasma total immunoglobulin E (IgE), histamine, interleukin (IL)-4 and IL-13 levels were significantly increased when the mice were treated with FBs. Conclusions: These results demonstrated that FBs affect the intestinal immune response and IgE and cytokine secretion in DBA/1 mice. <![CDATA[Notum attenuates HBV-related liver fibrosis through inhibiting Wnt 5a mediated non-canonical pathways]]> Abstract Background: Non-canonical Wnt pathways play important roles in liver fibrosis. Notum is a newly discovered inhibitor to Wnt proteins. This study was to investigate anti-fibrotic effects of Notum. Methods: 53 patients with hepatitis B virus (HBV) infection as well as a cell co-culture system of LX-2 and Hep AD38 cells were engaged in this study. Clinical, biological and virological data of each patient were analyzed. Cell viability was detected at different time points. mRNA and protein levels of NFATc1 (Nuclear factor of activated T-cells), Jnk, α-SMA, Col1A1 and TIMP-1 were detected both in LX-2 and liver tissue. Protein levels of NFATc1 and Jnk in liver tissue and their correlations with fibrosis score were analyzed. Results: Hepatitis B virus replication up-regulated Wnt5a induced NFATc1 and Jnk activity in Hep AD38. Notum suppressed NFATc1, Jnk and fibrosis genes expression, reduced cell viability in co-cultured LX-2 cells induced by HBV. Interestingly, Patients with HBV DNA &gt; 5log copies/ml had higher mRNA levels of NFATc1 and fibrosis genes than patients with HBV DNA &lt; 5log copies/ml. Most importantly, protein expressions of NFATc1 and pJnk have positive correlations with liver fibrosis scores in HBV-infected patients. Conclusions: Our data showed that Notum inhibited HBV-induced liver fibrosis through down-regulating Wnt 5a mediated non-canonical pathways. This study shed light on anti-fibrotic treatment. <![CDATA[IRF2-INPP4B-mediated autophagy suppresses apoptosis in acute myeloid leukemia cells]]> Abstract Background: The present study aimed to investigate the underlying role of interferon-regulatory factor 2 (IRF2)-inositol polyphosphate-4-phosphatase, type-II (INPP4B) axis in the regulation of autophagy in acute myeloid leukemia (AML) cells. Methods: Quantitative real time PCR (QRT-PCR) and western blot were performed to determine the expression levels of IRF2, INPP4B and autophagy-related markers in AML cell lines. Autophagy was assessed by elevated Beclin-1 expression, the conversion of light chain 3 (LC3)-I to LC3-II, downregulated p62 expression and green fluorescent protein (GFP)-LC3 puncta formation. The colony formation and apoptosis assays were performed to determine the effects of IRF2 and INPP4B on the growth of AML cells. Results: IRF2 and INPP4B were highly expressed in AML cell lines, and were positively correlated with autophagy-related proteins. Overexpression of IRF2 or INPP4B stimulated autophagy of AML cells, whereas inhibition of IRF2 or INPP4B resulted in the attenuation of autophagy. More importantly, IRF2 or INPP4B overexpression reversed autophagy inhibitor, 3-methyladenine (3-MA)-induced proliferation-inhibitory and pro-apoptotic effects, while IRF2 or INPP4B silencing overturned the proliferation-promoting and anti-apoptotic effects of autophagy activator rapamycin. Conclusion: IRF2-INPP4B signaling axis attenuated apoptosis through induction of autophagy in AML cells. <![CDATA[CoCl<sub>2</sub> simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis]]> Abstract Background/aims: Hypoxia microenvironment plays a crucial role during tumor progression and it tends to exhibit poor prognosis and make resistant to various conventional therapies. HIF-1α acts as an important transcriptional regulator directly or indirectly associated with genes involved in cell proliferation, angiogenesis, apoptosis and energy metabolism during tumor progression in hypoxic microenvironment. This study was aimed to investigate the expression pattern of the hypoxia associated genes and their association during breast cancer progression under hypoxic microenvironment in breast cancer cells. Methods: Cell proliferation in MCF-7 and MDA-MB-231 cell lines treated with different concentration of CoCl2 was analyzed by MTT assay. Flow cytometry was performed to check cell cycle distribution, whereas cell morphology was examined by phase contrast microscopy in both the cells during hypoxia induction. Expression of hypoxia associated genes HIF-1α, VEGF, p53 and BAX were determined by semiquantitative RT-PCR and real-time PCR. Western blotting was performed to detect the expression at protein level. Results: Our study revealed that cell proliferation in CoCl2 treated breast cancer cells were concentration dependent and varies with different cell types, further increase in CoCl2 concentration leads to apoptotic cell death. Further, accumulation of p53 protein in response to hypoxia as compare to normoxia showed that induction of p53 in breast cancer cells is HIF-1α dependent. HIF-1α dependent BAX expression during hypoxia revealed that after certain extent of hypoxia induction, over expression of BAX conquers the effect of anti-apoptotic proteins and ultimately leads to apoptosis in breast cancer cells. Conclusion: In conclusion our results clearly indicate that CoCl2 simulated hypoxia induce the accumulation of HIF-1α protein and alter the expression of hypoxia associated genes involved in angiogenesis and apoptosis. <![CDATA[Functional and transcriptomic characterization of carboplatin-resistant A2780 ovarian cancer cell lines]]> Abstract Background: Ovarian cancer is a significant cancer-related cause of death in women worldwide. The most used chemotherapeutic regimen is based on carboplatin (CBDCA). However, CBDCA resistance is the main obstacle to a better prognosis. An in vitro drug-resistant cell model would help in the understanding of molecular mechanisms underlying this drug-resistance phenomenon. The aim of this study was to characterize cellular and molecular changes of induced CBDCA-resistant ovarian cancer cell line A2780. Methods: The cell selection strategy used in this study was a dose-per-pulse method using a concentration of 100 μM for 2 h. Once 20 cycles of exposure to the drug were completed, the cell cultures showed a resistant phenotype. Then, the ovarian cancer cell line A2780 was grown with 100 μM of CBDCA (CBDCA-resistant cells) or without CBDCA (parental cells). After, a drug sensitivity assay, morphological analyses, cell death assays and a RNA-seq analysis were performed in CBDCA-resistant A2780 cells. Results: Microscopy on both parental and CBDCA-resistant A2780 cells showed similar characteristics in morphology and F-actin distribution within cells. In cell-death assays, parental A2780 cells showed a significant increase in phosphatidylserine translocation and caspase-3/7 cleavage compared to CBDCA-resistant A2780 cells (P &lt; 0.05 and P &lt; 0.005, respectively). Cell viability in parental A2780 cells was significantly decreased compared to CBDCA-resistant A2780 cells (P &lt; 0.0005). The RNA-seq analysis showed 156 differentially expressed genes (DEGs) associated mainly to molecular functions. Conclusion: CBDCA-resistant A2780 ovarian cancer cells is a reliable model of CBDCA resistance that shows several DEGs involved in molecular functions such as transmembrane activity, protein binding to cell surface receptor and catalytic activity. Also, we found that the Wnt/3-catenin and integrin signaling pathway are the main metabolic pathway dysregulated in CBDCA-resistant A2780 cells. <![CDATA[Knock-down the expression of <em>TaH2B-7D</em> using virus-induced gene silencing reduces wheat drought tolerance]]> Abstract Background: Drought is a major abiotic stress affecting global wheat (Triticum aestivum L.) production. Exploration of drought-tolerant genes is essential for the genetic improvement of drought tolerance in wheat. Previous studies have shown that some histone encoding genes are involved in plant drought tolerance. However, whether the H2B family genes are involved in drought stress response remains unclear. Methods: Here, we identified a wheat histone H2B family gene, TaH2B-7D, which was significantly up-regulated under drought stress conditions. Virus-induced gene silencing (VIGS) technology was used to further verify the function of TaH2B-7D in wheat drought tolerance. The phenotypic and physiological changes were examined in the TaH2B-7D knock-down plants. Results: In the TaH2B-7D knock-down plants, relative electrolyte leakage rate and malonaldehyde (MDA) content significantly increased, while relative water content (RWC) and proline content significantly decreased compared with those in the non-knocked-down plants under drought stress conditions. TaH2B-7D knock-down plants exhibited severe sagging, wilting and dwarf phenotypes under drought stress conditions, but not in the non-knocked-down plants, suggesting that the former were more sensitive to drought stress. Conclusion: These results indicate that TaH2B-7D potentially plays a vital role in conferring drought tolerance in wheat. <![CDATA[Effects of glutamine deprivation on oxidative stress and cell survival in breast cell lines]]> Abstract Background: Tumourigenic cells modify metabolic pathways In order to facilitate increased proliferation and cell survival resulting in glucose-and glutamine addiction. Previous research indicated that glutamine deprivation resulted in potential differential activity targeting tumourigenic cells more prominently. This is ascribed to tumourigenic cells utilising increased glutamine quantities for enhanced glycolysis-and glutaminolysis. In this study, the effects exerted by glutamine deprivation on reactive oxygen species (ROS) production, mitochondrial membrane potential, cell proliferation and cell death in breast tumourigenic cell lines (MCF-7, MDA-MB-231, BT-20) and a non-tumourigenic breast cell line (MCF-10A) were investigated. Results: Spectrophotometry demonstrated that glutamine deprivation resulted in decreased cell growth in a time-dependent manner. MCF-7 cell growth was decreased to 61% after 96 h of glutamine deprivation; MDA-MB-231 cell growth was decreased to 78% cell growth after 96 h of glutamine deprivation, MCF-10A cell growth was decreased 89% after 96 h of glutamine deprivation and BT-20 cell growth decreased to 86% after 24 h of glutamine deprivation and remained unchanged until 96 h of glutamine deprivation. Glutamine deprivation resulted in oxidative stress where superoxide levels were significantly elevated after 96 h in the MCF-7-and MDA-MB-231 cell lines. Time-dependent production of hydrogen peroxide was accompanied by aberrant mitochondrial membrane potential. The effects of ROS and mitochondrial membrane potential were more prominently observed in the MCF-7 cell line when compared to the MDA-MB-231-, MCF-10A- and BT-20 cell lines. Cell cycle progression revealed that glutamine deprivation resulted in a significant increase in the S-phase after 72 h of glutamine deprivation in the MCF-7 cell line. Apoptosis induction resulted in a decrease in viable cells in all cell lines following glutamine deprivation. In the MCF-7 cells, 87.61% of viable cells were present after 24 h of glutamine deprivation. Conclusion: This study demonstrates that glutamine deprivation resulted in decreased cell proliferation, time-dependent- and cell line-dependent ROS generation, aberrant mitochondrial membrane potential and disrupted cell cycle progression. In addition, the estrogen receptor positive MCF-7 cell line was more prominently affected. This study contributes to knowledge regarding the sensitivity of breast cancer cells and non-tumorigenic cells to glutamine deprivation. <![CDATA[In vitro transplantation of spermatogonial stem cells isolated from human frozen-thawed testis tissue can induce spermatogenesis under 3-dimensional tissue culture conditions]]> Abstract Background: Sperm production is one of the most complex biological processes in the body. In vitro production of sperm is one of the most important goals of researches in the field of male infertility treatment, which is very important in male cancer patients treated with gonadotoxic methods and drugs. In this study, we examine the progression of spermatogenesis after transplantation of spermatogonial stem cells under conditions of testicular tissue culture. Results: Testicular tissue samples from azoospermic patients were obtained and then these were freeze-thawed. Spermatogonial stem cells were isolated by two enzymatic digestion steps and the identification of these cells was confirmed by detecting the PLZF protein. These cells, after being labeled with DiI, were transplanted in azoospermia adult mice model. The host testes were placed on agarose gel as tissue culture system. After 8 weeks, histomorphometric, immunohistochemical and molecular studies were performed. The results of histomorphometric studies showed that the mean number of spermatogonial cells, spermatocytes and spermatids in the experimental group was significantly more than the control group (without transplantation) (P &lt; 0.05) and most of the cells responded positively to the detection of DiI. Immunohistochemical studies in host testes fragments in the experimental group express the PLZF, SCP3 and ACRBP proteins in spermatogonial cells, spermatocyte and spermatozoa, respectively, which confirmed the human nature of these cells. Also, in molecular studies of PLZF, Tekt1 and TP1, the results indicated that the genes were positive in the test group, while not in the control group. Conclusion: These results suggest that the slow freezing of SSCs can support the induction of spermatogenesis to produce haploid cells under the 3-dimensional testicular tissue culture. <![CDATA[Plant morphology, physiological characteristics, accumulation of secondary metabolites and antioxidant activities of <em>Prunella vulgaris</em> L. under UV solar exclusion]]> Abstract Background: Prunella vulgaris L. has been an important medicinal plant for the treatment of thyroid gland malfunction and mastitis in China for over 2000 years. There is an urgent need to select effective wavelengths for greenhouse cultivation of P. vulgaris as light is a very important factor in P. vulgaris growth. Here, we described the effects of natural light (control) and UV solar exclusion on the morphological and physiological traits, secondary metabolites contents and antioxidant activities of P. vulgaris. Results: The results showed that UV solar exclusion resulted in remarkable alterations to morphological and biomass traits; significantly reduced the chlorophyll a, chlorophyll b and total chlorophyll contents; significantly enhanced the ratio of chlorophyll a to b; and significantly increased the carotenoid and anthocyanin contents in P. vulgaris. UV solar exclusion significantly increased the catalase (CAT) and peroxidase (POD) activities, increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and slightly decreased the glutathione (GSH) content. UV solar exclusion significantly increased the soluble sugar and H2O2 contents and increased the soluble protein content but significantly decreased the proline content and slightly decreased the MDA content. The secondary metabolite contents (total phenolics, rosmarinic acid, caffeic acid, hyperoside, ursolic acid and oleanolic acid) and in vitro antioxidative properties (DPPH· and ABTS·+scavenging activities) were significantly increased in P. vulgaris spicas under UV solar exclusion. Additionally, the total polysaccharide and total flavonoids contents were slightly increased by UV solar exclusion. The salviaflaside content was significantly reduced by UV solar exclusion. Conclusion: Our study demonstrated that P. vulgaris activates several antioxidant defence systems against oxidative damage caused by UV solar exclusion. <![CDATA[MicroRNA-663 facilitates the growth, migration and invasion of ovarian cancer cell by inhibiting TUSC2]]> Abstract Background: MicroRNAs (miRNAs) have emerged as the critical modulators of the tumorigenesis and tumor progression. Methods: The levels of miR-663 in ovarian cancer cell lines and clinical tissues were detected using qRT-PCR assays. The Transwell invasion and wound healing assay were conducted to assess the roles of miR-663 in the migration and invasion of ovarian cancer cell in vitro. Rescue assays were carried out to confirm the contribution of tumor suppressor candidate 2 (TUSC2) in the aggressiveness of cancer cell which was regulated by miR-663. Results: The levels of miR-663 were up-regulated in ovarian cancer tissues in comparison with the corresponding normal tissues. Up-regulation of miR-663 increased the proliferation, colony formation, migration and invasion of ovarian cancer SKOV3 cell. Additional, over-expression of miR-663 increased the tumor growth of SKOV3 in xenograft model. Bioinformatics analysis and luciferase reporter assay identified that miR-663 decreased the level of TUSC2 via binding to the 3'-UTR of TUSC2 gene. Finally, the expression of TUSC2 was inversely associated with the level of miR–663 in ovarian carcinoma tissue and over-expression of TUSC2 inhibited the migration and invasion abilities of SKOV3 that was promoted by miR-663. Conclusion: Altogether, these results indicate that miR-663 acts as a potential tumor-promoting miRNA through targeting TUSC2 in ovarian cancer. <![CDATA[Identification and characterization of CircRNAs involved in the regulation of wheat root length]]> Abstract Background: Recent studies indicate that circular RNAs (circRNAs) may play important roles in the regulation of plant growth and development. Plant roots are the main organs of nutrient and water uptake. However, whether circRNAs involved in the regulation of plant root growth remains to be elucidated. Methods: LH9, XN979 and YN29 are three Chinese wheat varieties with contrasting root lengths. Here, the root circRNA expression profiles of LH9, XN979 and YN29 were examined by using high-throughput sequencing technology. Results: Thirty-three and twenty-two differentially expressed circRNAs (DECs) were identified in the YN29-LH9 comparison and YN29-XN979 comparison, respectively. Among them, ten DECs coexisted in both comparisons. As the roots of both LH9 and XN979 were significantly larger and deeper than YN29, the ten DECs coexisting in the two comparisons were highly likely to be involved in the regulation of wheat root length. Moreover, three of the ten DECs have potential miRNA binding sites. Real-time PCR analysis showed that the expression levels of the potential binding miRNAs exhibited significant differences between the long root plants and the short root plants. Conclusions: The expression levels of some circRNAs exhibited significant differences in wheat varieties with contrasting root phenotypes. Ten DECs involved in the regulation of wheat root length were successfully identified in which three of them have potential miRNAs binding sites. The expression levels of putative circRNA-binding miRNAs were correlated with their corresponding circRNAs. Our results provide new clues for studying the potential roles of circRNAs in the regulation of wheat root length. <![CDATA[Molecular cloning and subcellular localization of six <em>HDACs</em> and their roles in response to salt and drought stress in kenaf (<em>Hibiscus cannabinus</em> L.)]]> Abstract Background: Histone acetylation is an important epigenetic modification that regulates gene activity in response to stress. Histone acetylation levels are reversibly regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The imperative roles of HDACs in gene transcription, transcriptional regulation, growth and responses to stressful environment have been widely investigated in Arabidopsis. However, data regarding HDACs in kenaf crop has not been disclosed yet. Results: In this study, six HDACs genes (HcHDA2, HcHDA6, HcHDA8, HcHDA9, HcHDA19, and HcSRT2) were isolated and characterized. Phylogenetic tree revealed that these HcHDACs shared high degree of sequence homology with those of Gossypium arboreum. Subcellular localization analysis showed that GFP-tagged HcHDA2 and HcHDA8 were predominantly localized in the nucleus, HcHDA6 and HcHDA19 in nucleus and cytosol. The HcHDA9 was found in both nucleus and plasma membranes. Real-time quantitative PCR showed that the six HcHDACs genes were expressed with distinct expression patterns across plant tissues. Furthermore, we determined differential accumulation of HcHDACs transcripts under salt and drought treatments, indicating that these enzymes may participate in the biological process under stress in kenaf. Finally, we showed that the levels of histone H3 and H4 acetylation were modulated by salt and drought stress in kenaf. Conclusions: We have isolated and characterized six HDACs genes from kenaf. These data showed that HDACs are imperative players for growth and development as well abiotic stress responses in kenaf. <![CDATA[Methylation profile of the <em>ADRB3</em> gene and its association with lipid profile and nutritional status in adults]]> Abstract Background: Defects in DNA methylation have been shown to be associated with metabolic diseases such as obesity, dyslipidemia, and hypercholesterolemia. To analyze the methylation profile of the ADRB3 gene and correlate it with lipid profile, lipid intake, and oxidative stress based on malondialdehyde (MDA) and total antioxidant capacity (TAC), homocysteine and folic acid levels, nutritional status, lifestyle, and socioeconomic variables in an adult population. A cross-sectional epidemiological study representative of the East and West regions of the municipality of João Pessoa, Paraíba state, Brazil, enrolled 265 adults of both genders. Demographic, lifestyle, and socioeconomic questionnaires and a 24-h recall questionnaire were applied by trained interviewers' home. Nutritional and biochemical evaluation (DNA methylation, lipid profile, MDA, TAC, homocysteine and folic acid levels) was performed. Results: DNA hypermethylation of the ADRB3 gene, analyzed in leukocytes, was present in 50% of subjects and was associated with a higher risk of being overweight (OR 3.28; p = 0.008) or obese (OR 3.06; p = 0.017), a higher waist–hip ratio in males (OR 1.17; p = 0.000), greater intake of trans fats (OR 1.94; p = 0.032), higher LDL (OR 2.64; p = 0.003) and triglycerides (OR 1.81; p = 0.031), and higher folic acid levels (OR 1.85; p = 0.022). Conclusions: These results suggest that epigenetic changes in the ADRB3 gene locus may explain the development of obesity and non-communicable diseases associated with trans-fat intake, altered lipid profile, and elevated folic acid. Because of its persistence, DNA methylation may have an impact in adults, in association with the development of non-communicable diseases. This study is the first population-based study of the ADRB3 gene, and the data further support evaluation of ADRB3 DNA methylation as an effective biomarker. <![CDATA[Involvement of endothelial CK2 in the radiation induced perivascular resistant niche (PVRN) and the induction of radioresistance for non-small cell lung cancer (NSCLC) cells]]> Abstract Background: Tumor microenvironment (TME) plays a vital role in determining the outcomes of radiotherapy. As an important component of TME, vascular endothelial cells are involved in the perivascular resistance niche (PVRN), which is formed by inflammation or cytokine production induced by ionizing radiation (IR). Protein kinase CK2 is a constitutively active serine/threonine kinase which plays a vital role in cell proliferation and inflammation. In this study, we investigated the potential role of CK2 in PVRN after IR exposure. Result: Specific CK2 inhibitors, Quinalizarin and CX-4945, were employed to effectively suppressed the kinase activity of CK2 in human umbilical vein endothelial cells (HUVECs) without affecting their viability. Results showing that conditioned medium from IR-exposed HUVECs increased cell viability of A549 and H460 cells, and the pretreatment of CK2 inhibitors slowed down such increment. The secretion of IL-8 and IL-6 in HUVECs was induced after exposure with IR, but significantly inhibited by the addition of CK2 inhibitors. Furthermore, IR exposure elevated the nuclear phosphorylated factor-κB (NF-κB) p65 expression in HUVECs, which was a master factor regulating cytokine production. But when pretreated with CK2 inhibitors, such elevation was significantly suppressed. Conclusion: This study indicated that protein kinase CK2 is involved in the key process of the IR induced perivascular resistant niche, namely cytokine production, by endothelial cells, which finally led to radioresistance of non-small cell lung cancer cells. Thus, the inhibition of CK2 may be a promising way to improve the outcomes of radiation in nonsmall cell lung cancer cells. <![CDATA[Effect of cytoglobin overexpression on extracellular matrix component synthesis in human tenon fibroblasts]]> Abstract Background: Conjunctival filtering bleb scar formation is the main reason for the failure of glaucoma filtration surgery. Cytoglobin (Cygb) has been reported to play an important role in extracellular matrix (ECM) remodeling, fibrosis and tissue damage repairing. This study aimed to investigate the role of Cygb in anti-scarring during excessive conjunctival wound healing after glaucoma filtration surgery. Methods: Cygb was overexpressed in human tenon fibroblasts (hTFs) by transfecting hTFs with lentiviral particles encoding pLenti6.2-FLAG-Cygb. Changes in the mRNA and protein levels of fibronectin, collagen I, collagen III, TGF-β1, and HIF1α were determined by RT-PCR and western blotting respectively. Results: After Cygb overexpression, hTFs displayed no significant changes in visual appearance and cell counts compared to controls. Whereas, Cygb overexpression significantly decreased the mRNA and protein expression levels of collagen I, collagen III and fibronectin compared with control (p &lt; 0.01). There was also a statistically significant decrease in the mRNA and protein levels of TGF-β1 and HIF-1α in hTFs with overexpressed Cygb compared with control group (p &lt; 0.05). Conclusion: Our study provided evidence that overexpression of Cygb decreased the expression levels of fibronectin, collagen I, collagen III, TGF-β1 and HIF-1α in hTFs. Therefore, therapies targeting Cygb expression in hTFs may pave a new way for clinicians to solve the problem of post-glaucoma surgery scarring. <![CDATA[PELI3 mediates pro-tumor actions of down-regulated miR-365a-5p in non-small cell lung cancer]]> Abstract Background: To analyze the relative expression of PELI3 and its mechanistic involvement in the non-small cell lung cancer (NSCLC). Methods: PELI3 expression in NSCLC tissue samples was determined by the immunohistochemistry. The transcripts abundance of PELI3 was measured with real-time PCR. The protein intensity was analyzed by western blot. The overall survival in respect to PELI3 or miR-365a-5p expression was plotted by the Kaplan–Meier's analysis. Cell growth was determined by colony formation assay. Cell viability was measured by MTT assay. The migration and invasion were evaluated by wound healing and transwell assay respectively. The regulatory effect of miR-365a-5p on PELI3 was interrogated with luciferase reporter assay. The direct binding between miR-365a-5p and PELI3 was analyzed by pulldown assay. Results: PELI3 was aberrantly up-regulated in NSCLC both in vivo and in vitro. High level of PELI3 associated with poor prognosis. PELI3-deficiency significantly inhibited cell viability, colony formation, migration and invasion. We further identified that miR-365a-5p negatively regulated PELI3 in this disease. Ectopic expression of miR-365a-5p in both A549 and H1299 phenocopied PELI3-deficiency. Meanwhile, PELI3-silencing significantly abolished the pro-tumoral effect elicited by miR-365a-5p inhibition. Conclusion: Our results highlighted the importance of dysregulated miR-365a-5p-PELI3 signaling axis in NSCLC. <![CDATA[Origination and selection of ABCDE and <em>AGL6</em> subfamily MADS-box genes in gymnosperms and angiosperms]]> Abstract Background: The morphological diversity of flower organs is closely related to functional divergence within the MADS-box gene family. Bryophytes and seedless vascular plants have MADS-box genes but do not have ABCDE or AGAMOUS-LIKE6 (AGL6) genes. ABCDE and AGL6 genes belong to the subgroup of MADS-box genes. Previous works suggest that the B gene was the first ABCDE and AGL6 genes to emerge in plant but there are no mentions about the probable origin time of ACDE and AGL6 genes. Here, we collected ABCDE and AGL6 gene 381 protein sequences and 361 coding sequences from gymnosperms and angiosperms and reconstructed a complete Bayesian phylogeny of these genes. In this study, we want to clarify the probable origin time of ABCDE and AGL6 genes is a great help for understanding the role of the formation of the flower, which can decipher the forming order of MADS-box genes in the future. Results: These genes appeared to have been under purifying selection and their evolutionary rates are not significantly different from each other. Using the Bayesian evolutionary analysis by sampling trees (BEAST) tool, we estimated that: the mutation rate of the ABCDE and AGL6 genes was 2.617 × 10−3 substitutions/site/million years, and that B genes originated 339 million years ago (MYA), CD genes originated 322 MYA, and A genes shared the most recent common ancestor with E/AGL6 296 MYA, respectively. Conclusions: The phylogeny of ABCDE and AGL6 genes subfamilies differed. The APETALA1 (AP1 or A gene) subfamily clustered into one group. The APETALA3/PISTILLATA (AP3/PI or B genes) subfamily clustered into two groups: the AP3 and PI clades. The AGAMOUS/SHATTERPROOF/SEEDSTICK (AG/SHP/STK or CD genes) subfamily clustered into a single group. The SEPALLATA (SEP or E gene) subfamily in angiosperms clustered into two groups: the SEP1/2/4 and SEP3 clades. The AGL6 subfamily clustered into a single group. Moreover, ABCDE and AGL6 genes appeared in the following order: AP3/PI → AG/SHP/STK → AGL6/SEP/AP1. In this study, we collected candidate sequences from gymnosperms and angiosperms. This study highlights important events in the evolutionary history of the ABCDE and AGL6 gene families and clarifies their evolutionary path. <![CDATA[ROS play an important role in ATPR inducing differentiation and inhibiting proliferation of leukemia cells by regulating the PTEN/PI3K/AKT signaling pathway]]> Abstract Background: Acute myeloid leukemia (AML) is an aggressive and mostly incurable hematological malignancy with frequent relapses after an initial response to standard chemotherapy. Therefore, novel therapies are urgently required to improve AML clinical outcomes. 4-Amino-2-trifluoromethyl-phenyl retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been proven to show biological anti-tumor characteristics in our previous studies. However, its potential effect on leukemia remains unknown. The present research aims to investigate the underlying mechanism of treating leukemia with ATPR in vitro. Methods: In this study, the AML cell lines NB4 and THP-1 were treated with ATPR. Cell proliferation was analyzed by the CCK-8 assay. Flow cytometry was used to measure the cell cycle distribution and cell differentiation. The expression levels of cell cycle and differentiation-related proteins were detected by western blotting and immunofluorescence staining. The NBT reduction assay was used to detect cell differentiation. Results: ATPR inhibited cell proliferation, induced cell differentiation and arrested the cell cycle at the G0/G1 phase. Moreover, ATPR treatment induced a time-dependent release of reactive oxygen species (ROS). Additionally, the PTEN/PI3K/Akt pathway was downregulated 24 h after ATPR treatment, which might account for the anti-AML effects of ATPR that result from the ROS-mediated regulation of the PTEN/PI3K/AKT signaling pathway. Conclusions: Our observations could help to develop new drugs targeting the ROS/PTEN/PI3K/Akt pathway for the treatment of AML. <![CDATA[Abnormal expression of TBX4 during anorectal development in rat embryos with ethylenethiourea‑induced anorectal malformations]]> Abstract Background: To assess the expression of T-box transcription factor 4 (TBX4) during the anorectal development in normal and ethylenethiourea (ETU)-induced anorectal malformations (ARM) rat embryos. Methods: Anorectal malformations was induced by ETU on the 10th gestational day (E10) in rat embryos. Spatiotemporal expression of TBX4 was evaluated in normal (n = 490) and ETU-induced ARM rat embryos (n = 455) from E13 to E16 by immunohistochemical staining, Western blot analysis and real-time RT-PCR. Results: In the normal embryos, immunohistochemical staining revealed that TBX4 expression was detected in the epithelium of hindgut and urorectal septum (URS) on E13. TBX4-immunopositive cells were increased significantly in the epithelium of hindgut and URS, the future anal orifice part of cloacal membrane on E14. On E15, abundant stained cells were observed in the rectum, URS and dorsal cloacal membrane and the expression of positive cells reached its peak. On E16, only sporadic positive cells were distributed in the epithelium of the distal rectum. In the ARM embryos, the hindgut/rectum, URS and dorsal cloacal membrane were faint for TBX4 immunohistochemical staining. In the normal group, TBX4 protein and mRNA expression showed time-dependent changes in the hindgut/rectum from E13 to E16 on Western blot and real-time RT-PCR. On E13 and E15, the expression level of TBX4 mRNA in the ARM group was significantly lower than that in the normal group (P &lt; 0.05). On E15, the expression level of TBX4 protein in the ARM group was significantly lower than that in the normal group (P &lt; 0.05). Conclusions: The expression of TBX4 was downregulated in ETU-induced ARM embryos, which may play important roles in the pathogenesis of anorectal development. <![CDATA[Effect of carbamylated erythropoietin on neuronal apoptosis in fetal rats during intrauterine hypoxic‑ischemic encephalopathy]]> Abstract Background: Hypoxic-ischemic encephalopathy (HIE) is a common disease that occurs during the perinatal period. The primary cause of neonatal HIE is related to fetal intrauterine anoxia. Carbamylated erythropoietin (CEPO), a derivative of erythropoietin (EPO), does not exert any erythropoietic effect; however, the neuroprotective effects resemble those of EPO. Previous studies have shown the potential benefits of CEPO on the central nervous system. The present study aimed to investigate the role of CEPO in neuronal apoptosis during intrauterine HIE and the underlying mechanisms. Results: To validate our hypothesis, we established an intrauterine HIE model by occluding the bilateral uteroovarian arteries of pregnant Sprague–Dawley rats. Compared to the I/R group, neuronal apoptosis in the CEPO group was significantly lower at 4, 12, 24, and 48 h (P &lt; 0.05). CEPO significantly inhibited CC3 expression (P &lt; 0.05) during the early-stages after ischemia–reperfusion (0.5, 4, 8, 12 and 24 h), upregulated Bcl-2 expression, and downregulated Bax expression at 4, 8, 12, and 24 h (P &lt; 0.05). Conclusions: Carbamylated erythropoietin pretreatment inhibited the expression of proapoptotic protein CC3 in brain and regulated the Bcl-2/Bax ratio, resulting in reduced neuronal apoptosis and thus resulting in a protective effect on intrauterine HIE. <![CDATA[CXCL8<sub>(3-72)</sub> K11R/G31P protects against sepsis-induced acute kidney injury via NF-κB and JAK2/STAT3 pathway]]> Abstract Background: Acute kidney injury (AKI), which is mainly caused by sepsis, has high morbidity and mortality rates. CXCL8(3–72) K11R/G31P (G31P) can exert therapeutic effect on inflammatory diseases and malignancies. We aimed to investigate the effect and mechanism of G31P on septic AKI. Methods: An AKI mouse model was established, and kidney injury was assessed by histological analysis. The contents of serum creatinine (SCr) and blood urea nitrogen (BUN) were measured by commercial kits, whereas neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) were detected by enzyme-linked immunosorbent assay (ELISA) kits. The expressions of CXCL8 in serum and kidney tissues were determined using ELISA and immunohistochemical analysis, respectively. Apoptosis rate of renal tissue was detected by terminal deoxynucleotidyl transfer-mediated dUTP nick end labeling (TUNEL) analysis. The expressions of inflammatory cytokines were measured by quantitative real-time PCR and Western blot, respectively. The apoptosis-related proteins, JAK2, STAT3, NF-κB and IκB were determined by Western blot. Results: G31P could reduce the levels of SCr, BUN, HGAL and KIM-1 and inhibit the renal tissue injury in AKI mice. G31P was also found to suppress the serum and nephric CXCL8 expressions and attenuated the apoptosis rate. The levels of inflammatory cytokines, pro-apoptotic proteins were decreased, while the anti-apoptotic proteins were increased by G31P in AKI mice. G31P also inhibited the activation of JAK2, STAT3 and NF-κB in AKI mice. Conclusion: These results suggest that G31P could protect renal function and attenuate the septic AKI. Our findings provide a potential target for the treatment of AKI. <![CDATA[Chronic prostatitis alters the prostatic microenvironment and accelerates preneoplastic lesions in C57BL/6 mice]]> Abstract Background: Chronic prostatitis has been supposed to be associated with preneoplastic lesions and cancer development. The objective of this study was to examine how chronic inflammation results in a prostatic microenvironment and gene mutation in C57BL/6 mice. Methods: Immune and bacterial prostatitis mouse models were created through abdominal subcutaneous injection of rat prostate extract protein immunization (EAP group) or transurethral instillation of uropathogenic E. coli 1677 (E. coli group). Prostate histology, serum cytokine level, and genome-wide exome (GWE) sequences were examined 1, 3, and 6 months after immunization or injection. Result: In the EAP and E. coli groups, immune cell infiltrations were observed in the first and last months of the entire experiment. After 3 months, obvious proliferative inflammatory atrophy (PIA) and prostatic intraepithelial neoplasia (PIN) were observed accompanied with fibrosis hyperplasia in stroma. The decrease in basal cells (Cytokeratin (CK) 5+/p63+) and the accumulation of luminal epithelial cells (CK8+) in the PIA or PIN area indicated that the basal cells were damaged or transformed into different luminal cells. Hic1, Zfp148, and Mfge8 gene mutations were detected in chronic prostatitis somatic cells. Conclusion: Chronic prostatitis induced by prostate extract protein immunization or E. coli infection caused a reactive prostatic inflammation microenvironment and resulted in tissue damage, aberrant atrophy, hyperplasia, and somatic genome mutation. <![CDATA[De novo in vitro shoot morphogenesis from shoot tip-induced callus cultures of <em>Gymnema sylvestre</em> (Retz.) R.Br. ex Sm]]> Abstract Background: Gymnema sylvestre is a medicinal woody perennial vine known for its sweetening properties and antidiabetic therapeutic uses in the modern and traditional medicines. Its over-exploitation for the therapeutic uses and to meet the demand of pharmaceutical industry in raw materials supply for the production of anti-diabetic drugs has led to considerable decline in its natural population. Results: An efficient system of shoot bud sprouting from nodal segment explants and indirect plant regeneration from apical meristem-induced callus cultures of G. sylvestre have been developed on Murashige and Skoog (MS) medium amended with concentrations of cytokinins. Of the three growth regulators tested, N6-benzylaminopurine (BAP) was the most efficient and 2.0 mg L−1 gave the best shoot formation efficiency. This was followed by thidiazuron (TDZ) and kinetin (Kin) but, most of the TDZ-induced micro shoots showed stunted growth. Multiple shoot formation was observed on medium amended with BAP or TDZ at higher concentrations. The produced micro shoots were rooted on half strength MS medium amended with auxins and rooted plantlets acclimatized with 87% survival of the regenerates. Conclusions: The developed regeneration system can be exploited for genetic transformation studies, particularly when aimed at producing its high yielding cell lines for the anti-diabetic phytochemicals. It also offers opportunities for exploring the expression of totipotency in the anti-diabetic perennial vine.