Scielo RSS <![CDATA[Biological Research]]> vol. 51 num. lang. es <![CDATA[SciELO Logo]]> <![CDATA[<em>CCAT2</em> is an oncogenic long non-coding RNA in pancreatic ductal adenocarcinoma]]> Abstract Background Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive with poor prognosis. Long non-coding RNAs (lncRNAs), a group of non-coding RNAs, play important roles in the progression of PDAC. This study aimed to investigate the potential involvement of lncRNA CCAT2 in PDAC tumorigenesis. Methods Expression of CCAT2 was detected by quantitative real-time PCR (qRT-PCR) in 80 human PDAC tissues and three PDAC cell lines. The effects of CCAT2 silencing in PANC-1 cells on cell proliferation and invasion were studied using MTT assay and transwell assay, respectively. The effect of CCAT2 silencing on tumorigenesis was assessed by PANC-1 xenograft in vivo. Using si-KRAS, the role of KRAS to regulate CCAT2 was evaluated by qRT-PCR and luciferase reporter assay. The involvement of MEK/ERK and PI3K/AKT signaling in CCAT2 regulation was investigated by pathway inhibitors PD98059 and LY294002, respectively. Results CCAT2 was significantly elevated in high-grade PDAC tissues and higher CCAT2 expression was correlated with lower survival rate in PDAC patients. CCAT2 was up-regulated in PDAC cell lines, as compared with normal pancreatic cells. Silencing of CCAT2 inhibited cell proliferation and invasion in PANC-1 cells in vitro, and attenuated tumorigenesis of PANC-1 xenograft in vivo. Furthermore, CCAT2 was regulated by KRAS through MEK/ERK signaling pathway. Conclusions CCAT2 is an oncogenic lncRNA in PDAC likely regulated by the KRAS-MEK/ERK pathway. It could be a potential diagnostic biomarker and therapeutic target for PDAC. <![CDATA[Inducible T-cell co-stimulators regulate the proliferation and invasion of human hepatocellular carcinoma HepG2 cells]]> Abstract Background This study determined the regulatory effects of inducible T-cell co-stimulators (ICOS) in human hepatocellular carcinoma HepG2 cells using a RNA interference (RNAi) technique. Methods A RNAi technique was used to knockdown the expression of ICOS. ICOS expression after knockdown was detected as mRNA and protein levels by RT-PCR and Western blot, respectively. A MTT colorimetric assay was used to detect cell proliferation, and the Transwell assay was used to detect cell invasion. Western blot was carried out to detect the level of Bcl-2, AKT, and PI3K protein expression in different groups. Results The proliferation of HepG2 cells were significantly decreased after ICOS siRNA transfection (EG group). Similarly, the results of the Transwell experiment showed that invasion of HepG2 cells in the EG group was clearly reduced compared to the negative control (NC) and blank control groups (CON). Western blot analysis showed that knockdown of ICOS expression reduced the levels of Bcl-2 and AKT, and also significantly up-regulated the level of PI3K phosphorylation (P &lt; 0.01). Conclusion Down-regulating ICOS expression in HepG2 cells suppressed cell proliferation and invasion. The underlying mechanism may be related to the expression of the downstream factor, PI3K/AKT. <![CDATA[The tankyrase inhibitor G007-LK inhibits small intestine LGR5<sup>+</sup> stem cell proliferation without altering tissue morphology]]> Abstract Background The WNT pathway regulates intestinal stem cells and is frequently disrupted in intestinal adenomas. The pathway contains several potential biotargets for interference, including the poly-ADP ribosyltransferase enzymes tankyrase1 and 2. LGR5 is a known WNT pathway target gene and marker of intestinal stem cells. The LGR5+ stem cells are located in the crypt base and capable of regenerating all intestinal epithelial cell lineages. Results We treated Lgr5-EGFP-Ires-CreERT2;R26R-Confetti mice with the tankyrase inhibitor G007-LK for up to 3 weeks to assess the effect on duodenal stem cell homeostasis and on the integrity of intestinal epithelium. At the administered doses, G007-LK treatment inhibited WNT signalling in LGR5+ stem cells and reduced the number and distribution of cells traced from duodenal LGR5+ stem cells. However, the gross morphology of the duodenum remained unaltered and G007-LK-treated mice showed no signs of weight loss or any other visible morphological changes. The inhibitory effect on LGR5+ stem cell proliferation was reversible. Conclusion We show that the tankyrase inhibitor G007-LK is well tolerated by the mice, although proliferation of the LGR5+ intestinal stem cells was inhibited. Our observations suggest the presence of a tankyrase inhibitor-resistant cell population in the duodenum, able to rescue tissue integrity in the presence of G007-LK-mediated inhibition of the WNT signalling dependent LGR5+ intestinal epithelial stem cells. <![CDATA[Impaired T cell-mediated hepatitis in peroxisome proliferator activated receptor alpha (PPARα)-deficient mice]]> Abstract Background Peroxisome proliferator activated receptor alpha (PPARα), a regulator of enzymes involved in β oxidation, has been reported to influence lymphocyte activation. The purpose of this study was to determine whether PPARα plays a role in T cell-mediated hepatitis induced by Concanavalin A (ConA). Methods Wild type (wt) or PPARα-deficient (PPARα−/−) mice were treated with ConA (15 mg/kg) by intravenous injection 0, 10 or 24 h prior to sacrifice and serum and tissue collection for analysis of tissue injury, cytokine response, T cell activation and characterization. Results Ten and 24 h following ConA administration, wt mice had significant liver injury as demonstrated by serum transaminase levels, inflammatory cell infiltrate, hepatocyte apoptosis, and expression of several cytokines including interleukin 4 (IL4) and interferon gamma (IFNγ). In contrast, PPARα−/− mice were protected from ConA-induced liver injury with significant reductions in serum enzyme release, greatly reduced inflammatory cell infiltrate, hepatocellular apoptosis, and IFNγ expression, despite having similar levels of hepatic T cell activation and IL4 expression. This resistance to liver injury was correlated with reduced numbers of hepatic natural killer T (NKT) cells and their in vivo responsiveness to alpha-galactosylceramide. Interestingly, adoptive transfer of either wt or PPARα−/− splenocytes reconstituted ConA liver injury and cytokine production in lymphocyte-deficient, severe combined immunodeficient mice implicating PPARα within the liver, possibly through support of IL15 expression and/or suppression of IL12 production and not the lymphocyte as the key regulator of T cell activity and ConA-induced liver injury. Conclusion Taken together, these data suggest that PPARα within the liver plays an important role in ConA-mediated liver injury through regulation of NKT cell recruitment and/or survival. <![CDATA[Study on the relationship between expression patterns of cocaine-and amphetamine regulated transcript and hormones secretion in porcine ovarian follicles]]> Abstract Background Cocaine-and amphetamine regulated transcript (CART) is an endogenous neuropeptide, which is widespread in animals, plays a key role in regulation of follicular atresia in cattle and sheep. Among animal ovaries, CART mRNA was firstly found in the cattle ovaries. CART was localized in the antral follicles oocytes, granulosa and cumulus cells by immunohistochemistry and in situ hybridization. Further research found that secretion of E2 was inhibited in granulosa cells with a certain dose of CART, the effect depends on the stage of cell differentiation, suggesting that CART could play a crucial role in regulating follicle atresia. The objective of this study was to characterize the CART expression model and hormones secretion in vivo and vitro in pig follicle granulosa cells, preliminarily studied whether CART have an effect on granulosa cells proliferation and hormones secretion in multiparous animals such as pigs. Methods The expression levels of CART mRNA in granulosa cells of different follicles were analyzed using qRT-PCR technology. Immunohistochemistry technology was used to localize CART peptide. Granulosa cells were cultured in medium supplemented with different concentrations of CART and FSH for 168 h using Long-term culture system, and observed using a microscope. The concentration of Estradiol (E2) and progesterone (P) in follicular fluids of different test groups were detected by enzyme linked immunosorbent assay (ELISA). Results Results showed that expression level of CART mRNA was highest in medium follicles, and significantly higher than that in large and small follicles (P &lt; 0.05). Immunohistochemical results showed that CART were expressed both in granulosa cells and theca cells of large follicles, while CART were detected only in theca cells of medium and small follicles. After the granulosa cells were cultured for 168 h, and found that concentrations of E2 increase with concentrations of follicle-stimulating hormone (FSH) increase when the CART concentration was 0 μM. And the concentration of FSH reached 25 ng/mL, the concentration of E2 is greatest. It shows that the production of E2 needs induction of FSH in granulosa cells of pig ovarian follicles. With the increasing of CART concentrations (0.01, 0.1, 1 μM), E2 concentration has a declining trend, when the FSH concentrations were 25 and 50 ng/mL in the medium, respectively. Conclusions These results suggested that CART plays a role to inhibit granulosa cells proliferation and E2 production, which induced by FSH in porcine ovarian follicular granulosa cells in vitro, but the inhibition effect is not significant. So we hypothesis CART maybe not a main local negative regulatory factor during porcine follicular development, which is different from the single fetal animals. <![CDATA[Regulation of aquaporins in plants under stress]]> Abstract Aquaporins (AQP) are channel proteins belonging to the Major Intrinsic Protein (MIP) superfamily that play an important role in plant water relations. The main role of aquaporins in plants is transport of water and other small neutral molecules across cellular biological membranes. AQPs have remarkable features to provide an efficient and often, specific water flow and enable them to transport water into and out of the cells along the water potential gradient. Plant AQPs are classified into five main subfamilies including the plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26 like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and X intrinsic proteins (XIPs). AQPs are localized in the cell membranes and are found in all living cells. However, most of the AQPs that have been described in plants are localized to the tonoplast and plasma membranes. Regulation of AQP activity and gene expression, are also considered as a part of the adaptation mechanisms to stress conditions and rely on complex processes and signaling pathways as well as complex transcriptional, translational and posttranscriptional factors. Gating of AQPs through different mechanisms, such as phosphorylation, tetramerization, pH, cations, reactive oxygen species, phytohormones and other chemical agents, may play a key role in plant responses to environmental stresses by maintaining the uptake and movement of water in the plant body.