Scielo RSS <![CDATA[Biological Research]]> vol. 46 num. 2 lang. en <![CDATA[SciELO Logo]]> <![CDATA[<b>Foundational errors in the Neutral and Nearly-Neutral theories of evolution in relation to the Synthetic Theory</b>: <b>Is a new evolutionary paradigm necessary?</b>]]> The Neutral Theory of Evolution (NTE) proposes mutation and random genetic drift as the most important evolutionary factors. The most conspicuous feature of evolution is the genomic stability during paleontological eras and lack of variation among taxa; 98% or more of nucleotide sites are monomorphic within a species. NTE explains this homology by random fixation of neutral bases and negative selection (purifying selection) that does not contribute either to evolution or polymorphisms. Purifying selection is insufficient to account for this evolutionary feature and the Nearly-Neutral Theory of Evolution (N-NTE) included negative selection with coefficients as low as mutation rate. These NTE and N-NTE propositions are thermodynamically (tendency to random distributions, second law), biotically (recurrent mutation), logically and mathematically (resilient equilibria instead of fixation by drift) untenable. Recurrent forward and backward mutation and random fluctuations of base frequencies alone in a site make life organization and fixations impossible. Drift is not a directional evolutionary factor, but a directional tendency of matter-energy processes (second law) which threatens the biotic organization. Drift cannot drive evolution. In a site, the mutation rates among bases and selection coefficients determine the resilient equilibrium frequency of bases that genetic drift cannot change. The expected neutral random interaction among nucleotides is zero; however, huge interactions and periodicities were found between bases of dinucleotides separated by 1, 2... and more than 1,000 sites. Every base is co-adapted with the whole genome. Neutralists found that neutral evolution is independent of population size (N); thus neutral evolution should be independent of drift, because drift effect is dependent upon N. Also, chromosome size and shape as well as protein size are far from random. <![CDATA[<b>Increasing the rate of drying reduces metabolic imbalance, lipid peroxidation and critical water content in radicles of garden pea <i>(Pisum sativum L.)</i></b>]]> Orthodox seeds become desiccation-sensitive as they undergo germination. As a result, germinating seeds serve as a model to study desiccation sensitivity in plant tissues. The effects of the rate of drying on the viability, respiratory metabolism and free radical processes were thus studied during dehydration and wet storage of radicles of Pisum sativum. For both drying regimes desiccation could be described by exponential and inverse modified functions. Viability, as assessed by germination capacity and tetrazolium staining, remained at 100% during rapid (< 24 h) desiccation. However, it declined sharply at c. 0.26 g g¹ dm following slow (c. 5 days) drying. Increasing the rate of dehydration thus lowered the critical water content for survival. Rapid desiccation was also associated with higher activities and levels of malate dehydrogenase and the oxidized form of nicotinamide adenine dinucleotide. It was also accompanied by lower hydroperoxide levels and membrane damage. In addition, the activitiy of glutathione reductase was greater during rapid drying. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in wet storage after two weeks. The results presented are consistent with rapid desiccation reducing the accumulation of damage resulting from desiccation-induced aqueous-based deleterious reactions. In addition, they show that radicles are a useful model to study desiccation sensitivity in plant tissues. <![CDATA[<b>Effectiveness of zinc in modulating perinatal effects of arsenic on the teratological effects in mice offspring</b>]]> Exposure to arsenic via drinking water is considered as a worldwide problem. Studies have shown that arsenic exposure during pregnancy affects embryogenesis and offspring development in rats and mice. Zinc as a micronutrient regulates many physiological functions, including an antioxidative role under various toxic conditions. However, studies on the perinatal protective effect of zinc on offspring need further attention. The present study was designed to evaluate the potential protective role of zinc in mitigating the adverse effects in the offspring of arsenic exposure during pregnancy. The arsenic (40mg/kg body weight) and zinc (4% w/v) doses formed the only drinking fluid source for the experimental groups of dams during the perinatal period of the experiment. The early development of sensory motor coordination reflexes together with morphological development in the male pups was measured during the weaning period. In adolescence, the offspring were tested for their motor behavior. The enzyme γ-glutamyl transferase (γ-GT) and the oxidative stress indices like reduced glutathione (GSH) and lipid peroxidation (TBARS) were also estimated in the serum of the young adult male mice. Perinatal arsenic exposure caused depletion in body weight gain, delay in morphological development and retardation in the development of all sensory motor reflexes of the pups. In young adults, significant decrease in motor behavior with significant decrease in GSH level in the serum was observed. On the other hand, γ-GT and TBARS were significantly increased in the serum due to arsenic treatment. However, animals exposed to arsenic in the presence of zinc showed a remarkable ameliorating effect of zinc on all observed teratological and biochemical arsenic toxicity in male offspring. It was observed that zinc has an antioxidative role in the perinatal toxicity of arsenic. It is concluded from the present study that zinc consumed during the perinatal period of pregnancy can ameliorate the possible toxicities of arsenic exposure in the offspring by acting as an ameliorative supplement. <![CDATA[<b>Disruption of reproductive development in male rat offspring following gestational and lactational exposure to di-(2-ethylhexyl) phthalate and genistein</b>]]> Studies of developmental effects of mixtures of endocrine disrupters on the male reproductive system are of great concern. In this study, the reproductive effects of the co-administration of di-2-(ethylhexyl) phthalate (DEHP) and genistein (GEN) during pregnancy and lactation were studied in male rat offspring. Pregnant Sprague-Dawley rats were gavaged from gestation day 3 to postnatal day 21 with vehicle control, DEHP 250 mg/kg body weight (bwyday, GEN 50 mg/kg bwday, GEN 400 mg/kg bwday, and two combinations of the two compounds (DEHP 250 mg/kg bwday + GEN 50 mg/kg bwday, DEHP 250 mg/kg bwday + GEN 400 mg/kg bwday). The outcomes studied were general morphometry (weight, AGD), testicular histology, testosterone levels, and expression at the mRNA level of genes involved in steroidogenesis. Organ coefficient, AGD / body weight1/3 י, serum testosterone concentration and genes involved in steroidogenic pathway expression when exposed to DEHP (250mg/kg bwday), GEN(50mg/kg bwday) or GEN(400mg/kg bwday) alone were not significantly different from the control group. When exposed to (DEHP 250mg/kg bwday +GEN 50mg/kg bwday) together during pregnancy and lactation, serum testosterone concentration, epididymis coefficient and Cypal17a1,Scarb1 m RNA expression significantly decreased compared to the control and GEN(50mg/kg bwday). When exposed to (DEHP 250mg/kg bwday +GEN 400mg/kg bwday) together during pregnancy and lactation, AGD / body weight1/3 י, serum testosterone concentration, testis and epididymis coefficient and Star, Cypal17a1 mRNA expression appeared significantly decreased compared to the control and DEHP/GEN single exposure, together with developmental impairment of seminiferous tubules and seminiferous epithelium. Overall, co-administration of DEHP and GEN during gestation and lactation seem to acts in a cumulative manner to induce the most significant alterations in the neonate, especially with GEN at high dose, although the effect of the DEHP-GEN mixture on adult offspring should be observed further. <![CDATA[<b>Electrolyzed-reduced water increases resistance to oxidative stress, fertility, and lifespan via insulin/IGF-1-like signal in</b> <i>C. elegans</i>]]> Electrolyzed-reduced water (ERW) scavenges reactive oxygen species and is a powerful anti-oxidant. A positive correlation between oxidative stress and aging has been proved in many model organisms. In Caenorhabditis elegans, many long-lived mutants showed reduced fertility as a trade off against longevity phenotype. We aimed to study the effect of ERW on oxidative stress, fertility and lifespan of C. elegans. We also investigated the genetic pathway involved in the effect of ERW on resistance to oxidative stress and lifespan. We compared lifespan and fertility of worms in media prepared with distilled water and ERW. ERW significantly extended lifespan and increased the number of progeny produced. Then the effect of ERW on resistance to oxidative stress and lifespan of long-lived mutants was determined. ERW increased resistance to oxidative stress and lifespan of eat-2, a genetic model of dietary restriction, but had no effect on those of age-1, which is involved in insulin/insulin-like growth factor (IGF)-1-like signal. In addition, knockdown of daf-16, the downstream mediator of insulin/IGF-1-like signal, completely prevented the effect of ERW on lifespan. These findings suggest that ERW can extend lifespan without accompanying reduced fertility and modulate resistance to oxidative stress and lifespan via insulin/IGF-1-like signal in C. elegans. <![CDATA[<b>Anti-Iipase and antioxidant properties of 30 medicinal plants used in Oaxaca, México</b>]]> We report the results of in vitro anti-lipase and antioxidant assays using crude ethanolic extracts from 30 plants grown in Oaxaca, México. Anti-lipase tests were performed by using porcine pancreatic lipase (PPL) [EC] from Affymetrix/USB. The extracts of Solanum erianthum, Salvia microphylla, Brungmansia suaveolens and Cuphea aequipetala showed up to 60% PPL inhibition. The effect of these extracts on the kinetic parameters of PPL (Km= 0.36 mM, and Vmax=0.085 mM min -1) revealed that the alcoholic preparations of S. erianthum and C. aequipetala engendered a non-competitive inhibition (Vmax=0.055 mM min -1; Vmax= 0.053 mM min -1), whereas those of S. microphylla and B. suaveolens produced a mixed inhibition (Km= 0.567 mM, Vmax=0.051 mM min _1; Km=0.643 mM, Vmax= 0.042 mM min ¹). In addition to these findings, seven extracts from different plants were able to inhibit PPL in the range of 30-50%. Antioxidant tests against 2,2-Diphenyl-1-picryl hydrazyl (DPPH) confirmed that Arctostaphylos pungens, Gnaphalium roseum, Crotalaria pumila, Cuphea aequipetala, Rhus chondroloma, and Satureja laevigata possess relevant antioxidant activity (IC(5)0=50-80 μg mL¹). The general composition of the most effective ethanolic extracts was obtained in order to confirm their known chemistry reported by previous works. Comprehensive chemical analysis of the ethanolic extracts and their poisoning effects suggests that S. microphylla, C. aequipetala and A. pungens could be considered as the best sources with both desired properties. <![CDATA[<b>DNA Repair Genes XRCC1, XRCC3, XPD, and OGG1 Polymorphisms among the Central Region Population of Saudi Arabia</b>]]> DNA repair is one of the central defense mechanisms against mutagenic exposures. Inherited SNPs of DNA repair genes may contribute to variations in DNA repair capacity and susceptibility to cancer. Due to the presence of these variants, inter-individual and ethnic differences in DNA repair capacity have been established in various populations. Saudi Arabia harbors enormous genetic and cultural diversity. In the present study we aimed to determine the genotype and allele frequencies of XRCC1 Arg399Gln (rs25487), XRCC3 Thr241Met (rs861539), XPD Lys751Gln (rs13181), and OGG1 Ser326Cys (rs1052133) gene polymorphisms in 386 healthy individuals residing in the central region of Saudi Arabia and compare them with HapMap and other populations. The genotype and allele frequencies of the four DNA repair gene loci in central Saudi population showed a distinctive pattern. Furthermore, comparison of polymorphisms in these genes with other populations also showed a unique pattern for the central Saudi population. To the best of our knowledge, this is the first report that deals with these DNA repair gene polymorphisms among the central Saudi population. <![CDATA[<b>mRNA expression profile of selected oxygen sensing genes in the lung during recovery from chronic hypoxia</b>]]> This study analyzed the time dependence decay of the mRNA of selected genes important for the hypoxia response. The genes chosen were the two isoforms of hypoxia-inducible factors, the three isoforms of the prolyl hydroxylase domain protein, the vascular endothelial growth factor and endothelial nitric oxide synthase. mRNA and proteins were extracted from lungs obtained from control, hypoxic and 15 minutes normoxic recovered rats and analyzed by Real-time RT-PCR or by the Western Blot technique. Results indicated that in normoxia isoform 2á was the more represented hypoxia-inducible factor mRNA, and among the prolyl hydroxylase domain transcripts, isoform 3 was the least abundant. Moreover, in chronic hypoxia only hypoxia-inducible factor 1α and prolyl hydroxylase domain protein 3 increased significantly, while after 15 minutes of recovery all the mRNAs tested were decreased except endothelial nitric oxide synthase mRNA. In terms of proteins, hypoxia-inducible 1α was the isoform more significant in the nucleus, while 2á predominated in the cytosol. While the former was steady even after a brief recovery from hypoxia, the latter underwent a strong degradation. In conclusion we showed the relevance of the decay in the mRNA and protein levels upon re-oxygenation in normoxia. We believe that this has to be considered in research studies dealing with recovery from hypoxia. <![CDATA[<b>Phenolic profiles of nectar and honey of</b> <i>Quillaja saponaria</i> <b>Mol. (Quillajaceae) as potential chemical markers</b>]]> Quillaja saponaria Mol. (Quillajaceae) is one of the most important melliferous species in Chile, mainly as a source of monofloral honey. Honey made by A. mellifera presents biological activity against pathogens and antioxidant capacity associated with the presence of phenolic compounds deriving from the nectar, as a result of bee honey foraging. The aim of this study was to identify and quantify the phenolic compounds from the floral nectar of Q. saponaria and the honey made in apiaries in the central zone, and compare the composition of the chromatographic profiles of nectar and honey to known phenolic compounds. The results obtained by HPLC-DAD (high-performance liquid chromatography with diode-array detection) showed a similar profile of phenolic compounds, in which gallic acid, myricetin, rutin, quercetin and naringenin were identified. The phenolic compounds detected could be used as a reference for future studies for determining potential chemical markers of this honey, complementing the present identification of honeys by determining their botanical origin. The identification of bioindicators of the floral origins for honey of this species could provide added value to honey commercialization by certifying the botanical origin of their chemical features and biological attributes. <![CDATA[<b>Effects of Dangguibuxue Tang, a Chinese herbal medicine, on growth performance and immune responses in broiler chicks</b>]]> The effects of Dangguibuxue Tang (DBT) on growth performance and immunity response in immunosuppressed broiler chicks were investigated in this study. 240 one-d-old broiler chicks (DaHeng S01) were randomly divided into 4 groups, 2.0% DBT-treatment (A), 0.5% DBT-treatment (B), cyclophosphamide-control (C), and control group (D). From 4 d to 7 d of age, chicks in group A, B and C were given cyclophosphamide (CY) at a dosage of 100mg/kg body weight (BW) daily by intraperitoneal injection to induce immunosuppression. Chicks in group D were given an equal volume of physiological saline daily by intraperitoneal injection and considered normal chicks. Groups A and B were supplemented with 2.0% or 0.5% of DBT in the drinking water from 8 d to 42 d of age. Groups C and D did not receive any additional medication. The results revealed that chicks from group B had lower feed:gain rate (FGR), lower total mortality, higher immunity organ indexes, higher levels of Newcastle disease (ND) antibody and infectious bursal disease (IBD) antibody, higher interleukin-2 and interleukin-6 levels, and greater lymphocyte proliferative responses to concanavalin A (ConA) during the experiment than those from group C. However, no significant difference in the immunity status in the two levels of DBT-treatment was observed. These results indicate that supplementation of 0.5% of DBT can improve both cellular immunity and humoral immunity in immunosuppressed broiler chicks. <![CDATA[<b>Protective effects of lycopene on oxidative stress, proliferation and autophagy in iron supplementation rats</b>]]> Lycopene is common in diet and known for its antioxidant activities. However, the impact of lycopene on iron metabolism is poorly investigated. In this study, we hypothesize that lycopene can prevent iron-mediated oxidative stress, proliferation and autophagy in liver and use a rat model of nutritional iron supplementation to confirm its intervention in these defence mechanisms. We found that iron supplementation induced cell proliferation predominantly in non parenchymal cells compared with hepatocytes, but not apoptosis. In addition, iron was accumulated within the hepatic lysosomes where it triggered autophagy as evidenced by the formation of autophagic vesicles detected by LC3-B staining. Iron supplementation also induced morphologic alterations of the mitochondrial membranes probably due to increased lipid peroxidation as indicated by elevated iron and malondialdehyde concentrations in serum and tissues. Lycopene reduced iron-catalyzed lipid peroxidation by decreasing the malondialdehyde level in the liver and colon and enhancing the total superoxide dismutase activities in serum and tissues. The result suggest that lycopene prevents iron-induced oxidative stress, proliferation and autophagy at both biochemical and histological levels due to its potent free radical scavenging and antioxidant properties. <![CDATA[<b>Analysis of mRNA expression profiles of carotenogenesis and astaxanthin production of <i>Haematococcus pluvialis</i> under exogenous 2, 4-epibrassinolide (EBR)</b>]]> The fresh-water green unicellular alga Haematococcus pluvialis is known to accumulate astaxanthin under stress conditions. In the present study, transcriptional expression of eight genes involved in astaxanthin biosynthesis exposed to EBR (25 and 50 mg/L) was analyzed using qRT-PCR. The results demonstrated that both 25 and 50 mg/L EBR could increase astaxanthin productivity and the eight carotenogenic genes were up-regulated by EBR with different expression profiles. Moreover, EBR25 induction had a greater influence on the transcriptional expression of ipi-1, ipi-2, crtR-B, lyc and crtO (> 5- fold up-regulation) than on psy, pds, bkt; EBR50 treatment had a greater effect on the transcriptional expression of ipi-2, pds, lyc, crtR-B, bkt and crtO than on ipi-1 and psy. Furthermore, astaxanthin biosynthesis under EBR was up-regulated mainly by ipi1־ and psy at the post-transcriptional level, pds, lyc, crtR-B, bkt and crtO at the transcriptional level and ipi-2 at both levels. <![CDATA[<b>Relationship between severity of adult community-acquired pneumonia and impairment of the antioxidant defense system</b>]]> Oxidant/antioxidant imbalance has been reported in some infectious diseases, including community-acquired pneumonia (CAP). The aim was to assess the antioxidant status in adults with CAP and its relationship with clinical severity at admission. Fifty-nine patients with CAP were enrolled and categorized at admission by the FINE score, from July 2010 to October 2012. In the same period 61 controls were enrolled. Plasma samples were obtained at admission for determination of the ferric reducing ability of plasma (FRAP) and lipid peroxidation (8-isoprostane). Erythrocyte reduced (GSH)/oxidized (GSSG) glutathione, malondialdehyde (MDA) and antioxidant enzyme activity were assessed. Antioxidant status in adults with CAP represented by FRAP and the GSH/GSSG ratio were 16.8% (p=0.03) and 39.7% (p=0.04) lower than control values, respectively. In addition, FRAP values showed a positive correlation with GSH/GSSG ratio (r=0.852; p<0.02; n=59). The CAP group showed greater lipid peroxidation in both plasma and erythrocytes. The FINE score correlated negatively with FRAP (r= -0.718; p<0.05; n=59) and positively with MDA and F2 isoprostane levels (r=0.673; p<0.05; n=59; r=0.892; p<0.01; n=59, respectively). Antioxidant status alterations correlated with clinical severity. The FRAP assay and lipid peroxidation biomarkers may provide a useful parameter for estimating the severity and the clinical outcome of patients with CAP.