Scielo RSS <![CDATA[Biological Research]]> vol. 50 num. lang. en <![CDATA[SciELO Logo]]> <![CDATA[Musk gland seasonal development and musk secretion are regulated by the testis in muskrat (<em>Ondatra zibethicus</em>)]]> Abstract Background The muskrat is a seasonal breeder. Males secrete musk to attract females during the breeding season. The testosterone binding to the androgen receptor (AR) in musk glands of muskrat may play an important role conducting the musk secretion process. Methods The musk gland, testis and blood samples of musk rats are collected in both breeding and non-breeding seasons. Some part of the samples are kept in liquid nitrogen for transcriptome analysis and Western blotting test. Some part of the samples are kept in 70% alcohol for histology experiment, blood samples are kept at −20 °C for the serum testosterone measurement experiment. Results This study demonstrates that the quantity of secreted musk, the volume of the musk glands, the diameter of the gland cells and AR expression are all higher during the breeding season than at other times (p &lt; 0.01). StAR, P450scc and 3β-HSD expression in the Leydig cells of the testis were also higher during this season, as was serum testosterone. AR was also observed in the gland cells of two other musk-secreting animals, the musk deer and small Indian civet, in their musk glands. These results suggest that the testes and musk glands co-develop seasonally. Conclusion The musk glands’ seasonal development and musk secretion are regulated by the testes, and testosterone plays an important role in the seasonal development of musk glands. <![CDATA[BJ-1108, a 6-Amino-2,4,5-trimethylpyridin-3-ol analogue, regulates differentiation of Th1 and Th17 cells to ameliorate experimental autoimmune encephalomyelitis]]> Abstract Background CD4+ T cells play an important role in the initiation of an immune response by providing help to other cells. Among the helper T subsets, interferon-γ (IFN-γ)-secreting T helper 1 (Th1) and IL-17-secreting T helper 17 (Th17) cells are indispensable for clearance of intracellular as well as extracellular pathogens. However, Th1 and Th17 cells are also associated with pathogenesis and contribute to the progression of multiple inflammatory conditions and autoimmune diseases. Results In the current study, we found that BJ-1108, a 6-aminopyridin-3-ol analogue, significantly inhibited Th1 and Th17 differentiation in vitro in a concentration-dependent manner, with no effect on proliferation or apoptosis of activated T cells. Moreover, BJ-1108 inhibited differentiation of Th1 and Th17 cells in ovalbumin (OVA)-specific OT II mice. A complete Freund’s adjuvant (CFA)/OVA-induced inflammatory model revealed that BJ-1108 can reduce generation of proinflammatory Th1 and Th17 cells. Furthermore, in vivo studies showed that BJ-1108 delayed onset of disease and suppressed experimental autoimmune encephalomyelitis (EAE) disease progression by inhibiting differentiation of Th1 and Th17 cells. Conclusions BJ-1108 treatment ameliorates inflammation and EAE by inhibiting Th1 and Th17 cells differentiation. Our findings suggest that BJ-1108 is a promising novel therapeutic agent for the treatment of inflammation and autoimmune disease. <![CDATA[Metabotropic glutamate receptor 5 may be involved in macrophage plasticity]]> Abstract Background Macrophages are a functionally heterogeneous cell population and depending on microenvironments they polarize in two main groups: M1 and M2. Glutamic acid and glutamate receptors may participate in the regulation of macrophage plasticity. To investigate the role of glutamatergic systems in macrophages physiology, we performed the transfection of mGluR5 cDNAs into RAW-264.7 cells. Results Comparative analysis of modified (RAW-mGluR5 macrophages) and non-modified macrophages (RAW-macrophages) has shown that the RAW-mGluR5 macrophages absorbed more glutamate than control cells and the amount of intracellular glutamate correlated with the expression of excitatory amino acid transporters -2 (EAAT-2). Besides, our results have shown that RAW-mGluR5 macrophages expressed a higher level of peroxisome proliferator-activated receptor γ (PPAR-γ) and secreted more IL-10, high mobility group box 1 proteins (HMGB1) and Galectin-3 than control RAW-macrophages. Conclusions We propose that elevation of intracellular glutamate and expression of mGluR5 may initiate the metabolic rearrangement in macrophages that could contribute to the formation of an immunosuppressive phenotype. <![CDATA[Analysis of gene expression changes associated with human carcinoma-associated fibroblasts in non-small cell lung carcinoma]]> Abstract Background This study aimed to investigate the gene expression changes associated with carcinoma-associated fibroblasts (CAFs) involving in non-small cell lung carcinoma (NSCLC). Methods We downloaded the GEO series GSE22862, which contained matched gene expression values for 15 CAF and normal fibroblasts samples, and series GSE27289 containing SNP genotyping for four matched NSCLC samples. The differentially expressed genes in CAF samples were identified using the limma package in R. Then we performed gene ontology (GO) and pathway enrichment analysis and protein–protein interaction (PPI) network construction using the identified DEGs. Moreover, aberrant cell fraction, ploidy, allele-specific copy number, and loss of heterozygosity (LOH) within CAF cells were analyzed using the allele-specific copy number analysis. Results We obtained 545 differentially expressed genes between CAF and normal fibroblasts samples. The up-regulated genes are mainly involved in GO terms such as positive regulation of cell migration and extracellular region, while the down-regulated genes participate in the lung development and extracellular region. Multiple genes including bone morphogenetic protein 4 (BMP4) and transforming growth factor, beta 3 (TGFB3) are involved in the TGF-β signaling pathway. Genes including BMP4, TGFBI and matrix Gla protein (MGP) were hub genes. Moreover, no LOH event for BMP4 and MGP was found, that for sphingosine kinase 1 (SPHK1) was 70%, and for TGFBI was 40%. Conclusion Our data suggested that BMP4, MGP, TGFBI, and SPHK1 may be important in CAFs-associated NSCLC, and the abnormal expression and high LOH frequency of them may be used as the diagnosis targets of CAFs in NSCLC. <![CDATA[Uptake of DNA by cancer cells without a transfection reagent]]> Abstract Background Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. Methods A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer) and THLE3 (normal liver cells) after incubation overnight by counting radioactivity of the cells’ genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of “label it fluorescence in situ hybridization (FISH)” from Mirus (USA). Results The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA’s size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. Conclusions In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA fragments directly from the environment without the aid of the transfecting reagent. <![CDATA[<em>Alpinia oxyphylla</em> Miq. extract changes miRNA expression profiles in db-/db- mouse kidney]]> Abstract Background A number of dysregulated miRNAs have been identified and are proposed to have significant roles in the pathogenesis of type 2 diabetes mellitus or renal pathology. Alpinia oxyphylla has shown significant anti-inflammatory properties and play an anti-diabetes role. The objective of this study was to detect the alteration of miRNAs underlying the anti-diabetes effects of A. oxyphylla extract (AOE) in a type II diabetic animal model (C57BIKsj db-/db-). Results Treatment with AOE for 8 weeks led to lower concentrations of blood glucose, urine albumin, and urine creatinine. 17 and 13 miRNAs were statistically identified as differentially regulated in the DB/DB and db-/db- AOE mice, respectively, compared to the untreated db-/db- mice. Of these, 7 miRNAs were identified in both comparison groups, and these 7 miRNAs were verified by quantitative real-time PCR. Functional bioinformatics showed that the putative target genes of 7 miRNAs were associated with several diabetes effects and signaling pathways. Conclusions These founding suggest that the potential of AOE as a medicinal anti-diabetes treatment through changes in the expressions of specific miRNAs. The results provide a useful resource for future investigation of the role of AOE-regulated miRNAs in diabetes mellitus. <![CDATA[Morphological, molecular and FTIR spectroscopic analysis during the differentiation of kidney cells from pluripotent stem cells]]> Abstract Background Kidney diseases are a global health problem. Currently, over 2 million people require dialysis or transplant which are associated with high morbidity and mortality; therefore, new researches focused on regenerative medicine have been developed, including the use of stem cells. Results In this research, we generate differentiated kidney cells (DKCs) from mouse pluripotent stem cells (mPSCs) analyzing their morphological, genetic, phenotypic, and spectroscopic characteristics along differentiation, highlighting that there are no reports of the use of Fourier transform infrared (FTIR) spectroscopy to characterize the directed differentiation of mPSCs to DKCs. The genetic and protein experiments proved the obtention of DKCs that passed through the chronological stages of embryonic kidney development. Regarding vibrational spectroscopy analysis by FTIR, bands related with biomolecules were shown on mPSCs and DKCs spectra, observing distinct differences between cell lineages and maturation stages. The second derivative of DKCs spectra showed changes in the protein bands compared to mPSCs. Finally, the principal components analysis obtained from FTIR spectra allowed to characterize chemical and structurally mPSCs and their differentiation process to DKCs in a rapid and non-invasive way. Conclusion Our results indicated that we obtained DKCs from mPSCs, which passed through the chronological stages of embryonic kidney development. Moreover, FTIR spectroscopy resulted in a non-invasive, rapid and precise technic that together with principal component analysis allows to characterize chemical and structurally both kind of cells and also discriminate and determine different stages along the cell differentiation process. <![CDATA[Proton NMR characterization of intact primary and metastatic melanoma cells in 2D & 3D cultures]]> Abstract Objective To characterize the differences between the primary and metastatic melanoma cell lines grown in 2D cultures and 3D cultures. Methods Primary melanoma cells (WM115) and metastatic melanoma cells (WM266) extracted from a single donor was cultured in 2D as well as 3D cultures. These cells were characterized using proton NMR spectrometry, and the qualitative chemical shifts markers were identified and discussed. Results In monolayer culture (2D), we observed one qualitative chemical shift marker for primary melanoma cells. In spheroid cultures (3D), we observed nine significant chemical shifts, of which eight markers were specific for primary melanoma spheroids, whereas the other one marker was specific to metastatic melanoma spheroids. This study suggests that the glucose accumulation and phospholipid composition vary significantly between the primary and metastatic cells lines that are obtained from a single donor and also with the cell culturing methods. 14 qualitative chemical shift markers were obtained in the comparison between monolayer culture and spheroids cultures irrespective of the differences in the cell lines. Among which 4 were unique to monolayer cultures whereas 10 chemical shifts were unique to the spheroid cultures. This study also shows that the method of cell culture would drastically affect the phospholipid composition of the cells and also depicts that the cells in spheroid culture closely resembles the cells in vivo. Conclusion This study shows the high specificity of proton NMR spectrometry in characterizing cancer cell lines and also shows the variations in the glucose accumulation and phospholipid composition between the primary and metastatic melanoma cell lines from the same donor. Differences in the cell culture method does plays an important role in phospholipid composition of the cells. <![CDATA[Does <em>Cimicifuga racemosa</em> have the effects like estrogen on the sublingual gland in ovariectomized rats?]]> Abstract Background Cimicifuga racemosa is one of the herbs used for the treatment of climacteric syndrome, and it has been cited as an alternative therapy to estrogen. Apart from hectic fevers, dyspareunia and so on, dry mouth also increase significantly after menopause. It has not yet been reported whether C. racemosa has any impact on the sublingual gland, which may relate to dry mouth. In an attempt to determine this, we have compared the effects of estrogen and C. racemosa on the sublingual gland of ovariectomized rats. Results HE staining showed that the acinar cell area had contracted and that the intercellular spaces were broadened in the OVX (ovariectomized rats) group, while treatment with estradiol (E2) and iCR (isopropanolic extract of C. racemosa) improved these lesions. Transmission electron microscopy showed that rough endoplasmic reticulum expansion in mucous and serous acinar epithelial cells and apoptotic cells was more commonly seen in the OVX group than in the SHAM (sham-operated rats) group. Mitochondria and plasma membrane infolding lesions in the striated ducts were also observed. These lesions were alleviated by both treatments. It is of note that, in the OVX + iCR group, the volume of mitochondria in the striated duct was larger than in other groups. Immunohistochemical staining showed that the ratio of caspase-3 positive cells was significantly increased in the acinar cells of the OVX group compared with the SHAM group (p &lt; 0.05); and the MA (mean absorbance) of caspase-3 in the striated ducts also increased (p &lt; 0.05). Estradiol decreased the ratio of caspase-3 positive cells and the MA of caspase-3 in striated ducts significantly (p &lt; 0.05). ICR also reduced the ratio of caspase-3 positive cells and the MA in the striated ducts (p &lt; 0.05), but the reduction of the MA in striated ducts was inferior to that of the OVX + E2 group (p &lt; 0.05). Conclusion Both estradiol and iCR can inhibit subcellular structural damage, and down-regulate the expression of caspase-3 caused by ovariectomy, but their effects were not identical, suggesting that both drugs confer a protective effect on the sublingual gland of ovariectomized rats, but that the specific location and mechanism of action producing these effects were different. <![CDATA[Knockdown of ubiquitin-specific peptidase 39 inhibited the growth of osteosarcoma cells and induced apoptosis in vitro]]> Abstract Background Ubiquitin specific peptidase 39 (USP39), an essential factor in the assembly of the mature spliceosome complex, has an aberrant expression in several cancer. However, its function and the corresponding mechanism on human osteosarcoma has not been fully explored yet. Methods The mRNA and DNA copies of USP39 were increased in osteosarcoma cancer tissues compared with the one in human normal tissues according to datasets from the publicly available Oncomine database. A further western blot analysis also demonstrated an aberrant endogenous expression of USP39 in three different osteosarcoma cells. Then lentivirus-mediated short hairpin RNA (shRNA) was designed to silence USP39 in human osteosarcoma cell line U2OS, which is used to test the impact of USP39-silencing on cellular proliferation, colony formation, cell cycle distribution and apoptosis. Results Knockdown of USP39 expression in U2OS cell significantly decreased cell proliferation, impaired colony formation ability. A further analysis indicated suppression of USP39 arrested cell cycle progression at G2/M phase via p21 dependent way. In addition, the results of Annexin V/7-AAD staining suggested the knockdown of USP39 could promote U2OS cell apoptosis through PARP cleavage. Conclusions These results uncover the critical role of USP39 in regulating cancer cell mitosis and indicate USP39 is critical for osteosarcoma tumorigenesis. <![CDATA[Expression of cocaine- and amphetamine-regulated transcript (CART) in hen ovary]]> Abstract Background: Cocaine- and amphetamine-regulated transcript (CART), discovered initially by via differential display RT-PCR analysis of brains of rats administered cocaine, is expressed mainly in central nervous system or neuronal origin cells, and is involved in a wide range of behaviors, such as regulation of food intake, energy homeostasis, and reproduction. The hens egg-laying rate mainly depends on the developmental status of follicles, expression of CART have not been identified from hen follicles, the regulatory mechanisms of CART biological activities are still unknown. The objective of this study was to characterize the mRNA expression of CART in hen follicular granulosa cells and determine CART peptide localization and regulatory role during follicular development. Methods: Small white follicles (1–2 mm in diameter) were treated for RNA isolation; Small white follicles (1–2 mm in diameter) and large white follicles (4–6 mm in diameter) were treated for immunohistochemical localization and large white follicles (4–6 mm in diameter), small yellow follicles (6–8 mm in diameter), large yellow follicles (9–12 mm in diameter), mature follicles (F5, F4, F3, F2, F1, &gt;12 mm in diameter) were treated for RNA isolation and Real time PCR. Results: The results showed that full length of the CDS of hen CART was 336 bp encoding a 111 amino acid polypeptide. In the hen ovary, CART peptide was primarily localized to the theca layer, but not all, the oocyte and granulosa layer, with diffused, weaker staining than relative to the theca cell layer. Further, amount of CART mRNA was more (P &lt; 0.05) in granulosa cells of 6–8 mm follicles compared with that in granulosa cells of other follicles. However, CART mRNA amount was greater in theca cells of 4–6 mm follicles relative to follicles of other sizes (P &lt; 0.05). Conclusions: Results suggest that CART could play a potential role in developmental regulation of chicken follicles. <![CDATA[Photosynthesis at the far-red region of the spectrum in <em>Acaryochloris marina</em>]]> Abstract Acaryochloris marina is an oxygenic cyanobacterium that utilizes far–red light for photosynthesis. It has an expanded genome, which helps in its adaptability to the environment, where it can survive on low energy photons. Its major light absorbing pigment is chlorophyll d and it has α–carotene as a major carotenoid. Light harvesting antenna includes the external phycobilin binding proteins, which are hexameric rods made of phycocyanin and allophycocyanins, while the small integral membrane bound chlorophyll binding proteins are also present. There is specific chlorophyll a molecule in both the reaction center of Photosystem I (PSI) and PSII, but majority of the reaction center consists of chlorophyll d. The composition of the PSII reaction center is debatable especially the role and position of chlorophyll a in it. Here we discuss the photosystems of this bacterium and its related biology. <![CDATA[BRD4 inhibition suppresses cell growth, migration and invasion of salivary adenoid cystic carcinoma]]> Abstract Background: Bromodomain-containing protein 4 (BRD4) inhibition is a new therapeutic strategy for many malignancies. In this study, we aimed to explore the effect of BRD4 inhibition by JQ1 on in vitro cell growth, migration and invasion of salivary adenoid cystic carcinoma (SACC). Methods: The human normal epithelial cells and SACC cells (ACC-LM and ACC-83) were treated with JQ1 at concentrations of 0, 0.1, 0.5 or 1 μM. Cell Counting Kit-8 (CCK-8) assay was performed to evaluate cell proliferation. Cell apoptosis and cell cycle distribution was evaluated by Flow cytometry. Immunofluorescence staining was used to examine the expression of BRD4 in SACC cells. The quantitative real-time polymerase chain reaction (qRT-PCR) assay and western blot assay were performed to examine messenger RNA (mRNA) and protein levels in SACC cells. Wound- healing assay and transwell assay were used to evaluate the activities of migration and invasion of SACC cells. Results: JQ1 exhibits no adverse effects on proliferation, cell cycle and cell apoptosis of the normal human epithelial cells, while suppressed proliferation and cell cycle, and induced apoptosis of SACC cells, down-regulated the mRNA and protein levels of BRD4 in SACC cells, meanwhile reduced protein expressions of c-myc and BCL-2, two known target genes of BRD4. Moreover, JQ1 inhibited SACC cell migration and invasion by regulating key epithelial-mesenchymal transition (EMT) characteristics including E-cadherin, Vimentin and Twist. Conclusions: BRD4 is an important transcription factor in SACC and BRD4 inhibition by JQ1 may be a new strategy for SACC treatment. <![CDATA[Rapid culture-based detection of living mycobacteria using microchannel electrical impedance spectroscopy (m-EIS)]]> Abstract Background: Multiple techniques exist for detecting Mycobacteria, each having its own advantages and drawbacks. Among them, automated culture-based systems like the BACTEC-MGIT™ are popular because they are inexpensive, reliable and highly accurate. However, they have a relatively long "time-to-detection” (TTD). Hence, a method that retains the reliability and low-cost of the MGIT system, while reducing TTD would be highly desirable. Methods: Living bacterial cells possess a membrane potential, on account of which they store charge when subjected to an AC-field. This charge storage (bulk capacitance) can be estimated using impedance measurements at multiple frequencies. An increase in the number of living cells during culture is reflected in an increase in bulk capacitance, and this forms the basis of our detection. M. bovis BCG and M. smegmatis suspensions with differing initial loads are cultured in MGIT media supplemented with OADC and Middlebrook 7H9 media respectively, electrical "scans” taken at regular intervals and the bulk capacitance estimated from the scans. Bulk capacitance estimates at later time-points are statistically compared to the suspension's baseline value. A statistically significant increase is assumed to indicate the presence of proliferating mycobacteria. Results: Our TTDs were 60 and 36 h for M. bovis BCG and 20 and 9 h for M. smegmatis with initial loads of 1000 CFU/ml and 100,000 CFU/ml respectively. The corresponding TTDs for the commercial BACTEC MGIT 960 system were 131 and 84.6 h for M. bovis BCG and 41.7 and 12 h for M smegmatis, respectively. Conclusion: Our culture-based detection method using multi-frequency impedance measurements is capable of detecting mycobacteria faster than current commercial systems. <![CDATA[MicroRNA-98 inhibits the cell proliferation of human hypertrophic scar fibroblasts via targeting Col1A1]]> Abstract Background Hypertrophic scarring (HS) is a severe disease, and results from unusual wound healing. Col1A1 could promote the hypertrophic scar formation, and the expression of Col1A1 in HS tissue was markedly higher than that in the normal. In present study, we aimed to identify miRNAs as post-transcriptional regulators of Col1A1 in HS. Methods MicroRNA-98 was selected as the key miRNA comprised in HS. The mRNA levels of miR-98 in HS tissues and the matched normal skin tissues were determined by qRT-PCR. MTT and flow cytometry were used to determine the influence of miR-98 on cell proliferation and apoptosis of HSFBs, respectively. Col1A1 was found to be the target gene of miR-98 using luciferase reporter assay. Luciferase assay was performed to determine the relative luciferase activity in mimic NC, miR-98 mimic, inhibitor NC and miR-98 inhibitor with Col1A13′-UTR wt or Col1A13′-UTR mt reporter plasmids. The protein expression of Col1A1 in HSFBs after transfection with mimic NC, miR-98 mimic, inhibitor NC and miR-98 inhibitor were determined by western blotting. Results The mRNA level of miR-98 in HS tissues was much lower than that in the control. Transfection of HSFBs with a miR-98 mimic reduced the cell viability of HSFBs and increased the apoptosis portion of HSFBs, while inhibition of miR-98 increased cell viability and decreased apoptosis portion of HSFBs. miR-98 inhibitor increased the relative luciferase activity significantly when cotransfected with the Col1A1-UTR reporter plasmid, while the mutant reporter plasmid abolished the miR-98 inhibitor-mediated increase in luciferase activity. Western blotting revealed that overex-pression of miR-98 decreased the expression of Col1A1. Conclusions Overexpression of miR-98 repressed the proliferation of HSFBs by targeting Col1A1. <![CDATA[S100A8 inhibits PDGF-induced proliferation of airway smooth muscle cells dependent on the receptor for advanced glycation end-products]]> Abstract Background Airway remodeling is a key feature of asthma, characterized by increased proliferation of airway smooth muscle cells (ASMCs). S100A8 is a calcium‑binding protein with a potential to regulate cell proliferation. Here, the effect of exogenous S100A8 protein on the proliferation of ASMCs induced by platelet‑derived growth factor (PDGF) and the underlying molecular mechanism was investigated. Methods Rat ASMCs were cultured with or without a neutralizing antibody to the receptor for advanced glycation end‑products (RAGE), a potential receptor for S100A8 protein. Purified recombinant rat S100A8 protein was then added into the cultured cells, and the proliferation of ASMCs induced by PDGF was detected by colorimetric‑based WST‑8 assay and ampedance‑based xCELLigence proliferation assay. The expression levels of RAGE in ASMCs were analyzed using western blotting assay. Results Results showed that exogenous S100A8 inhibited the PDGF‑induced proliferation of rat ASMCs in a dose‑ dependent manner with the maximal effect at 1 μg/ml in vitro. Furthermore, when ASMCs was pre‑treated with anti‑RAGE neutralizing antibody, the inhibitory effect of S100A8 on PDGF‑induced proliferation was significantly sup‑ pressed. In addition, neither the treatment with S100A8 or PDGF alone nor the pre‑treatment with rS100A8 followed by PDGF stimulation affected the expression levels of RAGE. Conclusions Our study demonstrated that S100A8 inhibits PDGF‑induced ASMCs proliferation in a manner depend‑ ent on membrane receptor RAGE. <![CDATA[TMPYP4 exerted antitumor effects in human cervical cancer cells through activation of p38 mitogen-activated protein kinase]]> Abstract Background The aim of the present study was to investigate the potential effects of the 5,10,15,20‑tetrakis (1‑meth‑ ylpyridinium‑4‑yl) porphyrin (TMPyP4) on the proliferation and apoptosis of human cervical cancer cells and the underlying mechanisms by which TMPyP4 exerted its actions. Results After human cervical cancer cells were treated with different doses of TMPyP4, cell viability was determined by 3‑(4,5‑dimethyl‑2‑thiazolyl)‑2,5‑diphenyl‑2‑H‑tetrazolium bromide (MTT) method, the apoptosis was observed by flow cytometry (FCM), and the expression of p38 mitogen‑activated protein kinase (MAPK), phosphated p38 MAPK (p‑p38 MAPK), capase‑3, MAPKAPK2 (MK‑2) and poly ADP‑ribose polymerase (PARP) was measured by Western blot analysis. The analysis revealed that TMPyP4 potently suppressed cell viability and induced the apoptosis of human cervical cancer cells in a dose‑dependent manner. In addition, the up‑regulation of p‑p38 MAPK expression levels was detected in TMPyP4‑treated human cervical cancer cells. However, followed by the block of p38 MAPK signaling pathway using the inhibitor SB203580, the effects of TMPyP4 on proliferation and apoptosis of human cervical cancer cells were significantly changed. Conclusions It was indicated that TMPyP4‑inhibited proliferation and ‑induced apoptosis in human cervical cancer cells was accompanied by activating the p38 MAPK signaling pathway. Taken together, our study demonstrates that TMPyP4 may represent a potential therapeutic method for the treatment of cervical carcinoma. <![CDATA[Neuron-derived CCL2 contributes to microglia activation and neurological decline in hepatic encephalopathy]]> Abstract Background CCL2 was up-regulated in neurons and involved in microglia activation and neurological decline in mice suffering from hepatic encephalopathy (HE). However, no data exist concerning the effect of neuron-derived CCL2 on microglia activation in vitro. Methods The rats were pretreated with CCL2 receptor inhibitors (INCB or C021, 1 mg/kg/day i.p.) for 3 days prior to thioacetamide (TAA) administration (300 mg/kg/day i.p.) for inducing HE model. At 8 h following the last injection (and every 4 h after), the grade of encephalopathy was assessed. Blood and whole brains were collected at coma for measuring CCL2 and Iba1 expression. In vitro, primary neurons were stimulated with TNF-α, and then the medium were collected for addition to microglia cultures with or without INCB or C021 pretreatment. The effect of the medium on microglia proliferation and activation was evaluated after 24 h. Results CCL2 expression and microglia activation were elevated in the cerebral cortex of rats received TAA alone. CCL2 receptors inhibition improved neurological score and reduced cortical microglia activation. In vitro, TNF-α treatment induced CCL2 release by neurons. Medium from TNF-α stimulated neurons caused microglia proliferation and M1 markers expression, including iNOS, COX2, IL-6 and IL-1β, which could be suppressed by INCB or C021 pretreatment. The medium could also facilitate p65 nuclear translocation and IκBα phosphorylation, and NF-κB inhibition reduced the increased IL-6 and IL-1β expression induced by the medium. Conclusion Neuron-derived CCL2 contributed to microglia activation and neurological decline in HE. Blocking CCL2 or inhibiting microglia excessive activation may be potential strategies for HE. <![CDATA[The comparative mitogenomics and phylogenetics of the two grouse-grasshoppers (<em>Insecta</em>, <em>Orthoptera</em>, <em>Tetrigoidea</em>)]]> Abstract Objective This study aimed to reveal the mitochondrial genomes (mtgenomes) of Tetrix japonica and Alulatettix yunnanensis, and the phylogenetics of Orthoptera species. Methods The mtgenomes of A. yunnanensis and T. japonica were firstly sequenced and assembled through partial sequences amplification, and then the genome organization and gene arrangement were analyzed. Based on nucleotide/amino acid sequences of 13 protein-coding genes and whole mtgenomes, phylogenetic trees were established on 37 Orthoptera species and 5 outgroups, respectively. Results Except for a regulation region (A+T rich region), a total of 37 genes were found in mtgenomes of T. japonicaand A. yunnanensis, including 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes, which exhibited similar characters with other Orthoptera species. Phylogenetic tree based on 13 concatenated protein-coding nucleotide sequences were considered to be more suitable for phylogenetic reconstruction of Orthoptera species than amino acid sequences and mtgenomes. The phylogenetic relationships of Caelifera species were Acridoidea and Pamphagoidea &gt; Pyrgomorphoidea &gt; Pneumoroidea &gt; Eumastacoidea &gt; Tetrigoidea &gt; Tridactyloidea. Besides, a sister-group relationship between Tettigonioidea and Rhaphidophoroidea was revealed in Ensifera. Conclusion Concatenated protein-coding nucleotide sequences of 13 genes were suitable for reconstruction of phylogenetic relationship in orthopteroid species. Tridactyloidea was a sister group of Tetrigoidea in Caelifera, and Rhaphidophoroidea was a sister group of Tettigonioidea in Ensifera. <![CDATA[miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1]]> Abstract Background miR-22 has been shown to be frequently downregulated and act as a tumor suppressor in multiple cancers including breast cancers. However, the role of miR-22 in regulating the radioresistance of breast cancer cells, as well as its underlying mechanism is still not well understood. Methods The expressions of miR-22 and sirt1 at mRNA and protein levels were examined by qRT-PCR and Western Blot. The effects of miR-22 overexpression and sirt1 knockdown on cell viability, apoptosis, radiosensitivity, γ-H2AX foci formation were evaluated by CCK-8 assay, flow cytometry, colony formation assay, and γ-H2AX foci formation assay, respectively. Luciferase reporter assay and qRT-PCR analysis were performed to confirm the interaction between miR-22 and sirt1. Results miR-22 was downregulated and sirt1 was upregulated at both mRNA and protein levels in breast cancer cells. miR-22 overexpression or sirt1 knockdown significantly suppressed viability, induced apoptosis, reduced survival fraction, and increased the number of γ-H2AX foci in breast cancer cells. Sirt1 was identified as a target of miR-22 and miR-22 negatively regulated sirt1 expression. Ectopic expression of sirt1 dramatically reversed the inhibitory effect of miR-22 on cell viability and promotive effect on apoptotic rates and radiosensitivity in breast cancer cells. Conclusions miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting sirt1, providing a promising therapeutic target for breast cancer. <![CDATA[<em>Tridax procumbens</em> flavonoids: a prospective bioactive compound increased osteoblast differentiation and trabecular bone formation]]> Abstract Background The Tridax procumbens extracts (TPE) are known for their ethno-medicinal properties to increase osteogenic functioning in mesenchymal stem cells. Recently, we found that the T. procumbens flavonoids (TPF) significantly suppressed the RANKL-induced osteoclasts differentiation and bone resorption. The TPF also promoted osteoblasts differentiation and bone formation demonstrated by increasing bone formation markers in cultured mouse primary osteoblasts. However, the effects of the TPF on in vivo bone formation remain unclear. In this study, we investigated the effects of the TPF on in vivo bone formation, injected the TPF (20 mg/kg) twice a day in the low calcium diet mice and killed them after 21 day. Radiographic and histomorphometric analyses were performed on the dissected bones to determine the anabolic effects of the TPF. Results Bone mineral density and bone mineral content of the TPF-treated mice were significantly increased compared to the control mice. Bone formation-related indices like osteoblast number, osteoblast surface, bone volume, mineralizing surface, mineral apposition rate and bone formation rate were significantly increased in the TPF-treated mice compared to the control mice. Conclusion Our findings point towards the stimulation of bone formation by TPF, suggested that the TPF could be a potential natural anabolic agent to treat patients with bone loss-associated diseases such as osteoporosis. <![CDATA[A simple and rapid identification method for newly emerged porcine <em>Deltacoronavirus</em> with loop-mediated isothermal amplification]]> Abstract Background Porcine Deltacoronavirus (PDCoV) is a newly emerged enteropathogenic coronavirus that causes diarrhea and mortality in neonatal piglets. PDCoV has spread to many countries around the world, leading to significant economic losses in the pork industry. Therefore, a rapid and sensitive method for detection of PDCoV in clinical samples is urgently needed. Results In this study, we developed a single-tube one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay specific for nucleocapsid gene to diagnose and monitor PDCoV infections. The detection limit of RT-LAMP assay was 1 × 101 copies of PDCoV, which was approximately 100-fold more sensitive than gel-based one-step reverse transcription polymerase chain reaction (RT-PCR). This assay could specifically amplify PDCoV and had no cross amplification with porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine kobuvirus (PKoV), porcine astrovirus (PAstV), porcine reproductive and respiratory syndrome virus (PRRSV), classic swine fever virus (CSFV), and porcine circovirus type 2 (PCV2). By screening a panel of clinical specimens (N = 192), this method presented a similar sensitivity with nested RT-PCR and was 1–2 log more sensitive than conventional RT-PCR in detection of PDCoV. Conclusions The RT-LAMP assay established in this study is a potentially valuable tool, especially in low-resource laboratories and filed settings, for a rapid diagnosis, surveillance, and molecular epidemiology investigation of PDCoV infections. To the best of our knowledge, this is the first work for detection of newly emerged PDCoV with LAMP technology. <![CDATA[Upregulation of lncRNA BANCR associated with the lymph node metastasis and poor prognosis in colorectal cancer]]> Abstract Background Growing evidence has supported that long non-coding RNAs (lncRNAs) could play vital roles in the development, progression, and prognosis of colorectal cancer (CRC). However, little is known about the clinical significance of BRAF-activated non-coding RNA (BANCR) in CRC. The aim of this study is to explore the clinical value of lncRNA BANCR in CRC patients. Methods The expression of lncRNA BANCR was measured in 106 CRC tissues and 65 adjacent normal tissues using the quantitative real-time PCR. Results The study showed that lncRNA BANCR was highly expressed in CRC tissues compared with adjacent normal tissues (P &lt; 0.001). In addition, high expression of lncRNA BANCR was positively correlated with the lymph node metastasis (P &lt; 0.001). Kaplan–Meier analysis showed that patients with high lncRNA BANCR expression had a shorter overall survival (OS) compared with the low lncRNA BANCR expression group (P = 0.001). Interestingly, for the group of patients with the lymph node metastasis, we found the similar result that high lncRNA BANCR expression was related to poor OS (P = 0.004). Furthermore, the multivariate Cox regression model analysis indicated that high expression of lncRNA BANCR was an independent poor prognostic factor in CRC patients (HR 2.24, 95% CI 1.22–4.16, P = 0.009). Conclusions Upregulation of lncRNA BANCR may be associated with the lymph node metastasis and poor survival of CRC. LncRNA BANCR could be served as a novel and useful biomarker for CRC lymph node metastasis and prognosis. <![CDATA[MiR-320 inhibits the growth of glioma cells through downregulating PBX3]]> Abstract Background MiR-320 is downregulated in multiple cancers, including glioma and acts as tumor suppressor through inhibiting tumor cells proliferation and inducing apoptosis. PBX3 (Pre-B cell leukemia homeobox 3), a putative target gene of miR-320, has been reported to be upregulated in various tumors and promote tumor cell growth through regulating MAKP/ERK pathway. This study aimed to verify whether miR-320 influences glioma cells growth through regulating PBX3. Methods Twenty-four human glioma and paired adjacent nontumorous tissues were collected for determination of miR-320 and PBX3 expression using RT-qPCR and western blot assays. Luciferase reporter assay was performed to verify the interaction between miR-320 and its targeting sequence in the 3′ UTR of PBX3 in glioma cells U87 and U251. Increased miR-320 level in U87 and U251 cells was achieved through miR-320 mimic transfection and the effect of which on glioma cells growth, proliferation, cell cycle, apoptosis and activation of Raf-1/MAPK pathway was determined using MTT, colony formation, flow cytometry and western blot assays. PBX3 knockdown was performed using shPBX3 and the influence on MAPK pathway activation was evaluated. Results MiR-320 downregulation and PBX3 upregulation was found in glioma tissues. Luciferase reporter assays identified miR-320 directly blinds to the 3′ UTR of PBX3 in glioma cells. MiR-320 mimic transfection suppressed glioma cells proliferation, and induced cell cycle arrest and apoptosis. Both miR-320 overexpression and PBX3 knockdown inhibited Raf-1/MAPK activation. Conclusion MiR-320 may suppress glioma cells growth and induced apoptosis through the PBX3/Raf-1/MAPK axis, and miR-320 oligonucleotides may be a potential cancer therapeutic for glioma. <![CDATA[Neurochemical and behavioral characterization of neuronal glutamate transporter EAAT3 heterozygous mice]]> Abstract Background Obsessive–compulsive disorder (OCD) is a severe neuropsychiatric condition affecting 1–3% of the worldwide population. OCD has a strong genetic component, and the SLC1A1 gene that encodes neuronal glutamate transporter EAAT3 is a strong candidate for this disorder. To evaluate the impact of reduced EAAT3 expression in vivo, we studied male EAAT3 heterozygous and wild-type littermate mice using a battery of behavioral paradigms relevant to anxiety (open field test, elevated plus maze) and compulsivity (marble burying), as well as locomotor activity induced by amphetamine. Using high-performance liquid chromatography, we also determined tissue neurotransmitter levels in cortex, striatum and thalamus—brain areas that are relevant to OCD. Results Compared to wild-type littermates, EAAT3 heterozygous male mice have unaltered baseline anxiety-like, compulsive-like behavior and locomotor activity. Administration of acute amphetamine (5 mg/kg intraperitoneally) increased locomotion with no differences across genotypes. Tissue levels of glutamate, GABA, dopamine and serotonin did not vary between EAAT3 heterozygous and wild-type mice. Conclusions Our results indicate that reduced EAAT3 expression does not impact neurotransmitter content in the corticostriatal circuit nor alter anxiety or compulsive-like behaviors. <![CDATA[Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells]]> Abstract Background Melanoma took top position among the lethal cancers and, despite there have been some great attempts made to increase the natural life of patients with metastatic disease, long-lasting and complete remissions are few. Piceatannol, owns the similar function as resveratrol, has been defined as an anti-cancer agent playing important role in inhibition of proliferation, migration and metastasis in various cancer. Thus, we aim to investigate the anti-cancer effect and mechanisms of piceatannol in melanoma cells. Methods Melanoma cell lines WM266-4 and A2058 were treated either with or without piceatannol. Cell viability and cell apoptosis were assessed by using MTT and Annexin V/PI assay, respectively. Cells were transfected with specific miRNA using Lipfectamine 2000. miRNA bingding ability to 3'-UTR region within specific gene was assed by firefly luciferase analysis. Gene and protein expression was eveluated by qRT-PCR and western blot analysis, respectively. Results Our study showed that piceatannol inhibited WM266-4 and A2058 cells growth and induced apoptosis. Totally, 16 differentially expressed miRNAs were screened out including 8 up-regulated and 8 down-regulated miRNAs. Expression level of miR-181a is significantly higher in piceatannol-treated cells than normal control and is lower in melanoma cancer tissues than its adjacent normal tissues. Bcl-2 is a target gene of miR-181a. Moreover, silencing of miR-181a reverses the decrease of cell viability induced by piceatannol in WM266-4 and A2058 cells. Taken together, present study uncovered the ability of piceatannol to repress melanoma cell growth and clarified the contribution of miR-181a in the anticancer role of piceatannol. Conclusion The present study proposes that piceatannol can be taken into account to be a hopeful anticancer agent for melanoma. <![CDATA[Role of regenerating gene IA expression on local invasion and survival in nasopharyngeal carcinoma]]> Abstract Background Regenerating gene IA (REGIA) plays an important role in tissue regeneration and tumors prognosis of epithelium origin. However, the role of REGIA in nasopharyngeal carcinoma (NPC) is unclear. This study aims to investigate the expression and function of REG1A in NPC. Results We have found that there was 63 patients with REGIA positive expression of 155 patients in this study (40.65%). The positive expression rate of REGIA was 30.50, 44.44 and 47.83% in stage T2, T3 and T4 patients, respectively. The REGIA expression was significantly difference in T2 and T4 stage tumors or T2 and T3–T4 stage. The positive expression rate of REGIA was found to be higher in patients with cervical lymph node persistence than those with cervical lymph node complete regression. Patients with negative REGIA expression had a better overall survival and free survival than those with REGIA positive expression. In addition, according to the univariate and multivariate analysis, the REGIA expression was an independent adverse prognostic factor for NPC patients. Conclusion REGIA expression was a useful biomarker in NPC patients for assessing T stage and survival. <![CDATA[Molecular and functional characterization of ferredoxin NADP(H) oxidoreductase from <em>Gracilaria chilensis</em> and its complex with ferredoxin]]> Abstract Backgroud Ferredoxin NADP(H) oxidoreductases (EC (FNR) are flavoenzymes present in photosynthetic organisms; they are relevant for the production of reduced donors to redox reactions, i.e. in photosynthesis, the reduction of NADP+ to NADPH using the electrons provided by Ferredoxin (Fd), a small FeS soluble protein acceptor of electrons from PSI in chloroplasts. In rhodophyta no information about this system has been reported, this work is a contribution to the molecular and functional characterization of FNR from Gracilaria chilensis, also providing a structural analysis of the complex FNR/Fd. Methods The biochemical and kinetic characterization of FNR was performed from the enzyme purified from phycobilisomes enriched fractions. The sequence of the gene that codifies for the enzyme, was obtained using primers designed by comparison with sequences of Synechocystis and EST from Gracilaria. 5′RACE was used to confirm the absence of a CpcD domain in FNRPBS of Gracilaria chilensis. A three dimensional model for FNR and Fd, was built by comparative modeling and a model for the complex FNR: Fd by docking. Results The kinetic analysis shows KMNADPH of 12.5 M and a kcat of 86 s−1, data consistent with the parameters determined for the enzyme purified from a soluble extract. The sequence for FNR was obtained and translated to a protein of 33646 Da. A FAD and a NADP+ binding domain were clearly identified by sequence analysis as well as a chloroplast signal sequence. Phycobilisome binding domain, present in some cyanobacteria was absent. Transcriptome analysis of Gch revealed the presence of two Fd; FdL and FdS, sharing the motif CX5CX2CX29X. The analysis indicated that the most probable partner for FNR is FdS. Conclusion The interaction model produced, was consistent with functional properties reported for FNR in plants leaves, and opens the possibilities for research in other rhodophyta of commercial interest. <![CDATA[Programmed cell death 5 transgenic mice attenuates adjuvant induced arthritis by 2 modifying the T lymphocytes balance]]> Abstract Background Programmed cell death 5 (PDCD5) is an apoptosis-related gene cloned from TF-1 cells whose primary biological functions are to promote apoptosis and immune regulation. The effects and mechanisms exerted by key mediators of arthritic inflammation remain unclear in PDCD5 transgenic (PDCD5 tg) mice. Results In the current study, PDCD5 tg mice inhibited the progression of adjuvant-induced arthritis, specifically decreasing clinical signs and histological damage, compared with arthritis control mice. Additionally, the ratio of CD4+IFN-γ+ cells (Th1) and CD4+IL-17A+ cells (Th17), as well as the mRNA expression of the pro-inflammatory mediators IFN-γ, IL-6, IL-17A and TNF-α, were decreased in PDCD5 tg mice, while CD4+CD25+Foxp3+ regulatory T (Treg) cells and the anti-inflammatory mediators IL-4 and IL-10 were increased. Furthermore, PDCD5 tg mice demonstrated reduced serum levels of IFN-γ, IL-6, IL-17A and TNF-α and increased levels of IL-4. Conclusions Based on our data, PDCD5 exerts anti-inflammatory effects by modifying the T lymphocytes balance, inhibiting the production of pro-inflammatory mediators and promoting the secretion of anti-inflammatory cytokines, validating PDCD5 protein as a possible treatment for RA. <![CDATA[Effect of fresh frozen plasma on the in vitro activation of U937 monocytes: a potential role for the age of blood donors and their underlying cytokine profile]]> Abstract Background: Fresh frozen plasma (FFP) administration may increase the risk of nosocomial infections in parallel with the development of immune modulation. This could be driven by soluble mediators, possibly influencing the in vitro activation of human U937 monocyte cells, in a manner dependent on the age of the donors. Methods: FFP donors were stratified into groups of 19–30 years, 31–40 years or 41–50 years, and U937 cells were cultured with FFP (alone or plus lipopolysaccharide—LPS) for 24 h. Both in FFP and supernatants, TNF, IL-1β, IL-6, and IL-10 levels were measured by ELISA. Additionally, CD11B, TLR2, and CASP3 gene expression were measured by qtPCR in U937 cells. Total phagocytic activity was also assayed. Results: Elevated IL-10, but low TNF and IL-1β levels were measured in FFP from individuals aged 19–40 years, whereas in individuals aged 41–50 years FFP were characterized by equalized TNF and IL-10 levels. Elevated IL-6 levels were found in all FFP samples, especially in those from the oldest individuals. FFP stimulation was associated with striking modifications in cytokine production in an age-dependent way. Exposure to FFP attenuates the response to LPS. TLR2 and CD11B expression were enhanced regardless of the age of plasma donors, although CASP3 expression was increased only when FFP from individuals aged 19–40 years were tested. Phagocytosis decreased after exposure to FFP regardless of donor age. Conclusion: Our results suggest that soluble mediators in FFP may modulate the functioning of monocytes. Interestingly, this effect appears to be partially influenced by the age of donors. <![CDATA[Methanolic extract of <em>Euchelus asper</em> exhibits in-ovo anti-angiogenic and in vitro anti-proliferative activities]]> Abstract Background: The marine environment is a rich source of bioactive natural products. Many of the marine bioactive compounds have been derived successfully from molluscs. Euchelus asper is a marine mollusc which is commonly found in the intertidal rocky regions of the Mumbai coast. The present study was focused on evaluating the anti-angiogenic and anti- proliferative activities of methanolic extract of Euchelus asper (EAME). Methods: The anti-angiogenic activity of EAME (50–800 μg/mL) was assessed by chick chorio-allantoic membrane (CAM) model wherein multiple parameters in the CAM blood vessels were analysed through morphometric and histo-logical investigations. In vitro testing of EAME (5–20 μg/mL) included its cytotoxicity against three different cancer cell lines, its effect on cell proliferation by wound healing assay as well as their relevant molecular mechanisms. Statistical analysis was carried out by two-tailed student's t test for two unpaired groups. Results: Analysis of CAM revealed that the extract is effective in reducing the branching points of the 1st order blood vessels or capillaries of CAM. Histological analysis of CAM showed significant decrease in capillary plexus and compartmentalization along with increase in mesodermal blood vessels, thus establishing its anti-angiogenicity. Further, EAME exhibited moderate but significant cytotoxicity against A549 non-small cell lung carcinoma cell line. We also demonstrated that the cytotoxicity of EAME in A549 was associated with its apoptotic activity by subG1 phase arrest. Lastly, EAME significantly reduced A549 proliferation by reducing the expression of Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9). Conclusion: Overall, our study suggested that EAME has potential to inhibit tumour angiogenic and proliferative activity and may be a potential source for development of new anti-cancer pharmaceuticals. <![CDATA[Expression regulation and functional analysis of RGS2 and RGS4 in adipogenic and osteogenic differentiation of human mesenchymal stem cells]]> Abstract Background: Understanding the molecular basis underlying the formation of bone-forming osteocytes and lipid-storing adipocytes will help provide insights into the cause of disorders originating in stem/progenitor cells and develop therapeutic treatments for bone- or adipose-related diseases. In this study, the role of RGS2 and RGS4, two members of the regulators of G protein signaling (RGS) family, was investigated during adipogenenic and osteogenenic differentiation of human mesenchymal stem cells (hMSCs). Results: Expression of RGS2 and RGS4 were found to be inversely regulated during adipogenesis induced by dexamethasone (DEX) and 3-isobutyl-methylxanthine, regardless if insulin was present, with RGS2 up-regulated and RGS4 down-regulated in response to adipogenic induction. RGS2 expression was also up-regulated during osteogenesis at a level similar to that induced by treatment of DEX alone, a shared component of adipogenic and osteogenic differentiation inducing media, but significantly lower than the level induced by adipogenic inducing media. RGS4 expression was down-regulated during the first 48 h of osteogenesis but up-regulated afterwards, in both cases at levels similar to that induced by DEX alone. Expression knock-down using small interfering RNA against RGS2 resulted in decreased differentiation efficiency during both adipogenesis and osteogenesis. On the other hand, expression knock-down of RGS4 also resulted in decreased adipogenic differentiation but increased osteogenic differentiation. Conclusions: RGS2 and RGS4 are differentially regulated during adipogenic and osteogenic differentiation of hMSCs. In addition, both RGS2 and RGS4 play positive roles during adipogenesis but opposing roles during osteogenesis, with RGS2 as a positive regulator and RGS4 as a negative regulator. These results imply that members of RGS proteins may play multifaceted roles during human adipogenesis and osteogenesis to balance or counterbalance each other's function during those processes. <![CDATA[De novo transcriptome assembly, functional annotation and differential gene expression analysis of juvenile and adult <em>E. fetida</em>, a model oligochaete used in ecotoxicological studies]]> Abstract Background Earthworms are sensitive to toxic chemicals present in the soil and so are useful indicator organisms for soil health. Eisenia fetida are commonly used in ecotoxicological studies; therefore the assembly of a baseline transcriptome is important for subsequent analyses exploring the impact of toxin exposure on genome wide gene expression. Results This paper reports on the de novo transcriptome assembly of E. fetida using Trinity, a freely available software tool. Trinotate was used to carry out functional annotation of the Trinity generated transcriptome file and the transdecoder generated peptide sequence file along with BLASTX, BLASTP and HMMER searches and were loaded into a Sqlite3 database. To identify differentially expressed transcripts; each of the original sequence files were aligned to the de novo assembled transcriptome using Bowtie and then RSEM was used to estimate expression values based on the alignment. EdgeR was used to calculate differential expression between the two conditions, with an FDR corrected P value cut off of 0.001, this returned six significantly differentially expressed genes. Initial BLASTX hits of these putative genes included hits with annelid ferritin and lysozyme proteins, as well as fungal NADH cytochrome b5 reductase and senescence associated proteins. At a cut off of P = 0.01 there were a further 26 differentially expressed genes. Conclusion These data have been made publicly available, and to our knowledge represent the most comprehensive available transcriptome for E. fetida assembled from RNA sequencing data. This provides important groundwork for subsequent ecotoxicogenomic studies exploring the impact of the environment on global gene expression in E. fetida and other earthworm species. <![CDATA[Differential roles for pathogenicity islands SPI-13 and SPI-8 in the interaction of <em>Salmonella</em> Enteritidis and <em>Salmonella</em> Typhi with murine and human macrophages]]> Abstract Background Salmonella pathogenicity island (SPI)-13 is conserved in many serovars of S. enterica, including S. Enteritidis, S. Typhimurium and S. Gallinarum. However, it is absent in typhoid serovars such as S. Typhi and Paratyphi A, which carry SPI-8 at the same genomic location. Because the interaction with macrophages is a critical step in Salmonella pathogenicity, in this study we investigated the role played by SPI-13 and SPI-8 in the interaction of S. Enteritidis and S. Typhi with cultured murine (RAW264.7) and human (THP-1) macrophages. Results Our results showed that SPI-13 was required for internalization of S. Enteritidis in murine but not human macrophages. On the other hand, SPI-8 was not required for the interaction of S. Typhi with human or murine macrophages. Of note, the presence of an intact copy of SPI-13 in a S. Typhi mutant carrying a deletion of SPI-8 did not improve its ability to be internalized by, or survive in human or murine macrophages. Conclusions Altogether, our results point out to different roles for SPI-13 and SPI-8 during Salmonella infection. While SPI-13 contributes to the interaction of S. Enteritidis with murine macrophages, SPI-8 is not required in the interaction of S. Typhi with murine or human macrophages. We hypothesized that typhoid serovars have lost SPI-13 and maintained SPI-8 to improve their fitness during another phase of human infection. <![CDATA[A spleen tyrosine kinase inhibitor attenuates the proliferation and migration of vascular smooth muscle cells]]> Abstract Background Pathologic vascular smooth muscle cell (VSMC) proliferation and migration after vascular injury promotes the development of occlusive vascular disease. Therefore, an effective chemical agent to suppress aberrant proliferation and migration of VSMCs can be a potential therapeutic modality for occlusive vascular disease such as atherosclerosis and restenosis. To find an anti-proliferative chemical agent for VSMCs, we screened an in-house small molecule library, and the selected small molecule was further validated for its anti-proliferative effect on VSMCs using multiple approaches, such as cell proliferation assays, wound healing assays, transwell migration assays, and ex vivo aortic ring assay. Results Among 43 initially screened small molecule inhibitors of kinases that have no known anti-proliferative effect on VSMCs, a spleen tyrosine kinase (Syk) inhibitor (BAY61-3606) showed significant anti-proliferative effect on VSMCs. Further experiments indicated that BAY61 attenuated the VSMC proliferation in both concentration- and time-dependent manner, and it also significantly suppressed the migration of VSMCs as assessed by both wound healing assays and transwell assays. Additionally, BAY61 suppressed the sprouting of VSMCs from endothelium-removed aortic rings. Conclusion The present study identified a Syk kinase inhibitor as a potent VSMC proliferation and migration inhibitor and warrants further studies to elucidate its underlying molecular mechanisms, such as its primary target, and to validate its in vivo efficacy as a therapeutic agent for restenosis and atherosclerosis. <![CDATA[Meristem culture and subsequent micropropagation of Chilean strawberry (<em>Fragaria chiloensis</em> (L.) Duch.)]]> Abstract Background: Vegetative propagation of Fragaria sp. is traditionally carried out using stolons. This system of propagation, in addition to being slow, can spread plant diseases, particularly serious being viral. In vitro culture of meristems and the establishment of micropropagation protocols are important tools for solving these problems. In recent years, considerable effort has been made to develop in vitro propagation of the commercial strawberry in order to produce virus-free plants of high quality. These previous results can serve as the basis for developing in vitro-based propagation technologies in the less studied species Fragaria chiloensis. Results: In this context, we studied the cultivation of meristems and establishment of a micropropagation protocol for F. chiloensis. The addition of polyvinylpyrrolidone (PVP) improved the meristem regeneration efficiency of F. chiloensis accessions. Similarly, the use of 6-benzylaminopurine (BAP) in the culture media increased the average rate of multiplication to 3-6 shoots per plant. In addition, the use of 6-benzylaminopurine (BAP), had low levels (near zero) of explant losses due to oxidation. However, plant height as well as number of leaves and roots were higher in media without growth regulators, with average values of 0.5 cm, 9 leaves and 4 roots per plant. Conclusions: For the first time in Chilean strawberry, meristem culture demonstrated to be an efficient tool for eliminating virus from infected plants, giving the possibility to produce disease free propagation material. Also, the addition of PVP into the basal MS medium improved the efficiency of plant recovery from isolated meristems. Farmers can now access to high quality plant material produced by biotech tools which will improve their technological practices. <![CDATA[Synaptic configuration of quadrivalents and their association with the XY bivalent in spermatocytes of Robertsonian heterozygotes of <em>Mus domesticus</em>]]> Abstract Background The nuclear architecture of meiotic prophase spermatocytes is based on higher–order patterns of spatial associations among chromosomal domains and consequently is prone to modification by chromosomal rearrangements. We have shown that nuclear architecture is modified in spermatocytes of Robertsonian (Rb) homozygotes of Mus domesticus. In this study we analyse the synaptic configuration of the quadrivalents formed in the meiotic pro– phase of spermatocytes of mice double heterozygotes for the dependent Rb chromosomes: Rbs 11.16 and 16.17. Results Electron microscope spreads of 60 pachytene spermatocytes from four animals of Mus domesticus 2n = 38 were studied and their respective quadrivalents analysed in detail. Normal synaptonemal complex was found between arms 16 of the Rb metacentric chromosomes, telocentrics 11 and 17 and homologous arms of the Rb metacentric chromosomes. About 43% of the quadrivalents formed a synaptonemal complex between the heterologous short arms of chromosomes 11 and 17. This synaptonemal complex is bound to the nuclear envelope through a fourth synapsed telomere, thus dragging the entire quadrivalent to the nuclear envelope. About 57% of quadrivalents showed unsynapsed single axes in the short arms of the telocentric chromosomes. About 90% of these unsynapsed quadrivalents also showed a telomere–to–telomere association between one of the single axes of the telocentric chromosome 11 or 17 and the X chromosome single axis, which was otherwise normally paired with the Y chromosome. Nucleolar material was associated with two bivalents and with the quadrivalent. Conclusions The spermatocytes of heterozygotes for dependent Rb chromosomes formed a quadrivalent where four chromosomes are synapsed together and bound to the nuclear envelope through four telomeres. The nuclear configuration is determined by the fourth shortest telomere, which drags the centromere regions and heterochromatin of all the chromosomes towards the nuclear envelope, favouring the reiterated encounter and eventual rearrangement between the heterologous chromosomes. The unsynapsed regions of quadrivalents are frequently bound to the single axis of the X chromosome, possibly perturbing chromatin condensation and gene expression. <![CDATA[Selective intra-dinucleotide interactions and periodicities of bases separated by K sites: a new vision and tool for phylogeny analyses]]> Abstract Direct tests of the random or non-random distribution of nucleotides on genomes have been devised to test the hypothesis of neutral, nearly-neutral or selective evolution. These tests are based on the direct base distribution and are independent of the functional (coding or non-coding) or structural (repeated or unique sequences) properties of the DNA. The first approach described the longitudinal distribution of bases in tandem repeats under the Bose–Einstein statistics. A huge deviation from randomness was found. A second approach was the study of the base distribution within dinucleotides whose bases were separated by 0, 1, 2… K nucleotides. Again an enormous difference from the random distribution was found with significances out of tables and programs. These test values were periodical and included the 16 dinucleotides. For example a high “positive” (more observed than expected dinucleotides) value, found in dinucleotides whose bases were separated by (3K + 2) sites, was preceded by two smaller “negative” (less observed than expected dinucleotides) values, whose bases were separated by (3K) or (3K + 1) sites. We examined mtDNAs, prokaryote genomes and some eukaryote chromosomes and found that the significant non-random interactions and periodicities were present up to 1000 or more sites of base separation and in human chromosome 21 until separations of more than 10 millions sites. Each nucleotide has its own significant value of its distance to neutrality; this yields 16 hierarchical significances. A three dimensional table with the number of sites of separation between the bases and the 16 significances (the third dimension is the dinucleotide, individual or taxon involved) gives directly an evolutionary state of the analyzed genome that can be used to obtain phylogenies. An example is provided. <![CDATA[Properties of realgar bioleaching using an extremely acidophilic bacterium and its antitumor mechanism as an anticancer agent]]> Abstract Realgar is a naturally occurring arsenic sulfide (or Xionghuang, in Chinese). It contains over 90% tetra-arsenic tetrasulfide (As4S4). Currently, realgar has been confirmed the antitumor activities, both in vitro and in vivo, of realgar extracted using Acidithiobacillus ferrooxidans (A. ferrooxidans). Bioleaching, a new technology to greatly improve the use rate of arsenic extraction from realgar using bacteria, is a novel methodology that addressed a limitation of the traditional method for realgar preparation. The present systematic review reports on the research progress in realgar bioleaching and its antitumor mechanism as an anticancer agent. A total of 93 research articles that report on the biological activity of extracts from realgar using bacteria and its preparation were presented in this review. The realgar bioleaching solution (RBS) works by inducing apoptosis when it is used to treat tumor cells in vitro and in vivo. When it is used to treat animal model organisms in vivo, such as mice and Caenorhabditis elegans, tumor tissues grew more slowly, with mass necrosis. Meanwhile, the agent also showed obvious inhibition of tumor cell growth. Bioleaching technology greatly improves the utilization of realgar and is a novel methodology to improve the traditional method. <![CDATA[A review on plant importance, biotechnological aspects, and cultivation challenges of jojoba plant]]> Abstract Jojoba is considered a promising oil crop and is cultivated for diverse purposes in many countries. The jojoba seed produces unique high-quality oil with a wide range of applications such as medical and industrial-related products. The plant also has potential value in combatting desertification and land degradation in dry and semi-dry areas. Although the plant is known for its high-temperature and high-salinity tolerance growth ability, issues such as its male-biased ratio, relatively late flowering and seed production time hamper the cultivation of this plant. The development of efficient biotechnological platforms for better cultivation and an improved production cycle is a necessity for farmers cultivating the plant. In the last 20 years, many efforts have been made for in vitro cultivation of jojoba by applying different molecular biology techniques. However, there is a lot of work to be done in order to reach satisfactory results that help to overcome cultivation problems. This review presents a historical overview, the medical and industrial importance of the jojoba plant, agronomy aspects and nutrient requirements for the plant’s cultivation, and the role of recent biotechnology and molecular biology findings in jojoba research. <![CDATA[Awareness and current knowledge of breast cancer]]> Abstract Breast cancer remains a worldwide public health dilemma and is currently the most common tumour in the globe. Awareness of breast cancer, public attentiveness, and advancement in breast imaging has made a positive impact on recognition and screening of breast cancer. Breast cancer is life-threatening disease in females and the leading cause of mortality among women population. For the previous two decades, studies related to the breast cancer has guided to astonishing advancement in our understanding of the breast cancer, resulting in further proficient treatments. Amongst all the malignant diseases, breast cancer is considered as one of the leading cause of death in post menopausal women accounting for 23% of all cancer deaths. It is a global issue now, but still it is diagnosed in their advanced stages due to the negligence of women regarding the self inspection and clinical examination of the breast. This review addresses anatomy of the breast, risk factors, epidemiology of breast cancer, pathogenesis of breast cancer, stages of breast cancer, diagnostic investigations and treatment including chemotherapy, surgery, targeted therapies, hormone replacement therapy, radiation therapy, complementary therapies, gene therapy and stem-cell therapy etc for breast cancer. <![CDATA[Mutations in BRCA1, BRCA2 and other breast and ovarian cancer susceptibility genes in Central and South American populations]]> Abstract Breast cancer (BC) is the most common malignancy among women worldwide. A major advance in the understanding of the genetic etiology of BC was the discovery of BRCA1 and BRCA2 (BRCA1/2) genes, which are considered high-penetrance BC genes. In non-carriers of BRCA1/2 mutations, disease susceptibility may be explained of a small number of mutations in BRCA1/2 and a much higher proportion of mutations in ethnicity-specific moderate- and/or low-penetrance genes. In Central and South American populations, studied have focused on analyzing the distribution and prevalence of BRCA1/2 mutations and other susceptibility genes that are scarce in Latin America as compared to North America, Europe, Australia, and Israel. Thus, the aim of this review is to present the current state of knowledge regarding pathogenic BRCA variants and other BC susceptibility genes. We conducted a comprehensive review of 47 studies from 12 countries in Central and South America published between 2002 and 2017 reporting the prevalence and/or spectrum of mutations and pathogenic variants in BRCA1/2 and other BC susceptibility genes. The studies on BRCA1/2 mutations screened a total of 5956 individuals, and studies on susceptibility genes analyzed a combined sample size of 11,578 individuals. To date, a total of 190 different BRCA1/2 pathogenic mutations in Central and South American populations have been reported in the literature. Pathogenic mutations or variants that increase BC risk have been reported in the following genes or genomic regions: ATM, BARD1, CHECK2, FGFR2, GSTM1, MAP3K1, MTHFR, PALB2, RAD51, TOX3, TP53, XRCC1, and 2q35.