SciELO - Scientific Electronic Library Online

 
vol.38 número4Near ω-continuous multifunctions on bitopological spacesSome pairwise weakly Fuzzy mappings índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Proyecciones (Antofagasta)

versión impresa ISSN 0716-0917

Proyecciones (Antofagasta) vol.38 no.4 Antofagasta dic. 2019

http://dx.doi.org/10.22199/issn.0717-6279-2019-04-0045 

Articles

Equitable total chromatic number of splitting graph

G. Jayaraman1 
http://orcid.org/0000-0003-4909-5269

D. Muthuramakrishnan2 

K. Manikandan3 

1Vels Institute of Science, Technology and Advanced Studies, Dept. of Mathematics, Chennai, TN, India e-mail: jayaram07maths@gmail.com

2National College (Autonomous), Trichy, TN, India e-mail: dmuthuramakrishnan@gmail.com

3Guru Nanak College (Autonomous), Chennai, TN, India e-mail: kmanimaths1987@gmail.com

Abstract:

Among the varius coloring of graphs, the concept of equitable total coloring of graph G is the coloring of all its vertices and edges in which the number of elements in any two color classes differ by atmost one. The minimum number of colors required is called its equitable total chromatic number. In this paper, we determine an equitable total chromatic number of splitting graph of Pn, Cn and K1,n.

Keywords: Equitable total coloring; Equitable total chromatic number; Splitting graph

Texto completo disponible sólo en PDF.

Full text available only in PDF format.

References

[1] M. Behzad, Graphs and their chromatic numbers, Ph. D. thesis, Michigan State University, East Lansing, MI, USA, 1965. [ Links ]

[2] G. Girija, and J. Veninstine Vivik, “Equitable total coloring of some graphs” , International Journal of Mathematical Combinatorics, vol. 1, pp. 107-112, Mar. 2015. [On line]. Available: https://bit.ly/338wzRoLinks ]

[3] G. Kun, Z. Zhongfu and W. Jian Fang, “Equitable total coloring of some join graphs”, Journal of mathematical research and exposition, vol. 28, no. 4, pp. 823-828, 2008, doi: 10.3770/j.issn:1000-341X.2008.04.010. [ Links ]

[4] H. Wang and J. Wei, “The equitable total chromatic number of the graph HM(Wn)” , Journal of applied mathematics and computing, vol. 24, no. 1-2, pp. 313-323, May 2007, doi: 10.1007/BF02832320. [ Links ]

[5] H. Fu, “Some results on equalized total coloring” , Congressus numerantium, vol. 102, pp. 111-119, 1994. [ Links ]

[6] M. Gang and M. Ming, “The equitable total chromatic number of the some join-graphs” , Open journal of applied sciences, vol. 2, no. 4B, pp. 96-99, Jan. 2012, doi: 10.4236/ojapps.2012.24B023. [ Links ]

[7] M. Gang, Z. Zhong-fu, “On the equitable total coloring of multiple join graph” , Journal of mathematical research and exposition, no. 2, pp. 351-354, 2007. [On line]. Available: https://bit.ly/2q0KcE5Links ]

[8] E. Sampathkumar and H. Walikar, “On spliting graph of a graph” , Journal of the Karnatak University-Science, vol. 25-26, pp. 13-16, 1980-1981. [On line]. Available: https://bit.ly/2LYpb5aLinks ]

[9] T. Chunling, L. Xiaohui, Y. Yuansheng and L. Lizhihe, “Equitable total coloring of Cm2 Cn” , Discrete applied mathematics, vol. 157, no. 4, pp. 596-601, Feb. 2009, doi: 10.1016/j.dam.2008.08.030. [ Links ]

[10] V. Vivik J. y G. Girija, “An algorithmic approach to equitable total chromatic number of graphs” , Proyecciones (Antofagasta, En línea), vol. 36, no. 2, pp. 307-324, Jun. 2017, doi: 10.4067/S0716-09172017000200307. [ Links ]

[11] V. Vizing, “On an estimate of the chromatic class of a p− graph”, (in Russian), Diskret. Analiz., no. 5, pp. 25-30, 1964. [ Links ]

[12] W. Wang, “Equitable Total Coloring of Graphs with Maximum Degree 3”, Graphs and combinatorics, vol. 18, no. 3, pp. 677-685, Oct. 2002, doi: 10.1007/s003730200051. [ Links ]

[13] Z. Zhang, W. Wang, S. Bau and J. Li, “On the equitable total coloring of some join graphs”, Journal of information and computational science, vol. 2, no. 4, pp. 829-834, 2005. [ Links ]

[14] Z. Zhang, J. Zhang and J. Wang, “The total chromatic number of some graph” , Scientia Sinica. Series A., vol. 31, no. 12, pp. 1434-1441, (1988). [ Links ]

Received: June 2018; Accepted: March 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License