SciELO - Scientific Electronic Library Online

 
vol.83 issue2The I-index, a new estimator of the impact of scientific productivity: Ecologists from Chile as study case author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Revista chilena de historia natural

Print version ISSN 0716-078X

Abstract

VALDOVINOS, FERNANDA S; URBANI, PASQUINELL  and  RAMOS-JILIBERTO, RODRIGO. Analysis of the consequences of individual adaptive behavior on population stability: The case of optimal foraging. Rev. chil. hist. nat. [online]. 2010, vol.83, n.2, pp.207-218. ISSN 0716-078X.  http://dx.doi.org/10.4067/S0716-078X2010000200001.

Early work based on the Dynamical Systems Theory demonstrates that the larger the number of interacting populations, the system tends to be more unstable. Nevertheless, empirical evidence indicates that natural populations more often exhibit stable dynamics, in spite of being embedded into complex communities. Adaptive behavior of individuals is found to be one of the mechanisms promoting population stabilization. In this work, we analyze the theoretical advances about the role of optimal foraging (FO) as a stabilizing force of population dynamics, in model communities with different levels of structural complexity. Our analysis is organized around three central points: i) what is the control system against which it is compared the stability of a population whose indviduals exhibit FO?, ii) what stability concept is being used?, and iii) how the assumptions of FO are incorporated within the rules governing the dynamics of populations? Based on our analysis, we specify the points that should be addressed for evaluating properly the stabilizing role of FO, as well as other kinds of adaptive behavior that satisfy the assumptions of the Ecological Optimization Theory. Finally, we conjecture that the stabilizing effect of FO will be qualitatively dependent on the level of resources in the system, and the ratio of environmental perturbation rate to the predator's adaptation rate.

Keywords : adaptive behavior; diet; optimization; phenotypic plasticity; population models.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License