Articulo

• Citado por SciELO
• Accesos

• Citado por Google
• Similares en SciELO
• Similares en Google

versión impresa ISSN 0716-0917

Resumen

JEYANTHI, P.  y  MAHESWARI, A.. Odd Vertex equitable even labeling of cyclic snake related graphs. Proyecciones (Antofagasta) [online]. 2018, vol.37, n.4, pp.613-625. ISSN 0716-0917.  http://dx.doi.org/10.4067/S0716-09172018000400613.

Let G be a graph with p vertices and q edges and A = {1, 3, ..., q} if q is odd or A = {1, 3, ..., q + 1} if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling f : V (G) → A that induces an edge labeling f∗ defined by f∗(uv) = f(u) + f(v) for all edges uv such that for all a and b in A, |vf (a) − vf (b)| ≤ 1 and the induced edge labels are 2, 4, ..., 2q where vf (a) be the number of vertices v with f(v) = a for a ∈ A. A graph that admits an odd vertex equitable even labeling is called an odd vertex equitable even graph. Here, we prove that the graph nC4-snake, CS(n1, n2, ..., nk), ni ≡ 0(mod4),ni ≥ 4, be a generalized kCn -snake, TÔQSn and TÕQSn are odd vertex equitable even graphs.

Palabras clave : vertex equitable labeling; vertex equitable graph; odd vertex equitable even labeling; odd vertex equitable even graph..

· texto en Inglés     · Inglés ( pdf )