SciELO - Scientific Electronic Library Online

vol.47Physiological and biochemical characterization of egg extract of black widow spiders to uncover molecular basis of egg toxicityEffect of chlorocholine chlorid on phenolic acids accumulation and polyphenols formation of buckwheat plants author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Biological Research

Print version ISSN 0716-9760


VALENZUELA, Carlos Y. The structure of selective dinucleotide interactions and periodicities in D melanogaster mtDNA. Biol. Res. [online]. 2014, vol.47, pp.1-12. ISSN 0716-9760.

BACKGROUND: We found a strong selective 3-sites periodicity of deviations from randomness of the dinucleotide (DN) distribution, where both bases of DN were separated by 1, 2, K sites in prokaryotes and mtDNA. Three main aspects are studied. I) the specific 3 K-sites periodic structure of the 16 DN. II) to discard the possibility that the periodicity was produced by the highly nonrandom interactive association of contiguous bases, by studying the interaction of non-contiguous bases, the first one chosen each I sites and the second chosen J sites downstream. III) the difference between this selective periodicity of association (distance to randomness) of the four bases with the described fixed periodicities of base sequences. RESULTS: I) The 16 pairs presented a consistent periodicity in the strength of association of both bases of the pairs; the most deviated pairs are those where G and C are involved and the least deviated ones are those where A and T are involved. II) we found significant non-random interactions when the first nucleotide is chosen every I sites and the second J sites downstream until I = J = 76. III) we showed conclusive differences between these internucleotide association periodicities and sequence periodicities. CONCLUSIONS: This relational selective periodicity is different from sequence periodicities and indicates that any base strongly interacts with the bases of the residual genome; this interaction and periodicity is highly structured and systematic for every pair of bases. This interaction should be destroyed in few generations by recurrent mutation; it is only compatible with the Synthetic Theory of Evolution and agrees with the Wright's adaptive landscape conception and evolution by shifting balanced adaptive peaks.

Keywords : Dinucleotides; DNA periodicity; Periodicity structure; Selective interactions; Theories of evolution.

        · text in English     · English ( pdf )