SciELO - Scientific Electronic Library Online

 
vol.48Antitumor compounds from Streptomyces sp. KML-2, isolated from Khewra salt mines, PakistanmiR-205 promotes proliferation and invasion of laryngeal squamous cell carcinoma by suppressing CDK2AP1 expression author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Biological Research

Print version ISSN 0716-9760

Abstract

CHEN, Haide et al. Functional disruption of human leukocyte antigen II in human embryonic stem cell. Biol. Res. [online]. 2015, vol.48, pp.1-9. ISSN 0716-9760.  http://dx.doi.org/10.1186/S40659-015-0051-6.

BACKGROUND: Theoretically human embryonic stem cells (hESCs) have the capacity to self-renew and differentiate into all human cell types. Therefore, the greatest promise of hESCs-based therapy is to replace the damaged tissues of patients suffering from traumatic or degenerative diseases by the exact same type of cells derived from hESCs. Allo-graft immune rejection is one of the obstacles for hESCs-based clinical applications. Human leukocyte antigen (HLA) II leads to CD4+ T cells-mediated allograft rejection. Hence, we focus on optimizing hESCs for clinic application through gene modification RESULTS: Transcription activator-like effector nucleases (TALENs) were used to target MHC class II transactivator (CIITA) in hESCs efficiently. CIITA-/-hESCs did not show any difference in the differentiation potential and self-renewal capacity. Dendritic cells (DCs) derived from CIITA-/-hESCs expressed CD83 and CD86 but without the constitutive HLA II. Fibroblasts derived from CIITA-/-hESCs were powerless in IFN-γ inducible expression of HLA II CONCLUSION: We generated HLA II defected hESCs via deleting CIITA, a master regulator of constitutive and IFN-γ inducible expression of HLA II genes. CIITA-/-hESCs can differentiate into tissue cells with non-HLA II expression. It's promising that CIITA-/-hESCs-derived cells could be used in cell therapy (e.g., T cells and DCs) and escape the attack of receptors' CD4+ T cells, which are the main effector cells of cellular immunity in allograft

Keywords : hESCs; CIITA; TALENs; Immune rejection.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License