SciELO - Scientific Electronic Library Online

 
vol.48The role of MCP-1-CCR2 ligand-receptor axis in chondrocyte degradation and disease progress in knee osteoarthritisTranscriptome responses to heat- and cold-stress in ladybirds (Cryptolaemus montrouzieri Mulasnt) analyzed by deep-sequencing author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Biological Research

Print version ISSN 0716-9760

Abstract

MAMUN, Md. Abdullah Al et al. Tridax procumbens flavonoids promote osteoblast differentiation and bone formation. Biol. Res. [online]. 2015, vol.48, pp.1-8. ISSN 0716-9760.  http://dx.doi.org/10.1186/S40659-015-0056-1.

BACKGROUND: Tridaxprocumbens flavonoids (TPFs) are well known for their medicinal properties among local natives. Besides traditionally used for dropsy, anemia, arthritis, gout, asthma, ulcer, piles, and urinary problems, it is also used in treating gastric problems, body pain, and rheumatic pains of joints. TPFs have been reported to increase osteogenic functioning in mesenchymal stem cells. Our previous study showed that TPFs were significantly suppressed the RANKL-induced differentiation of osteoclasts and bone resorption. However, the effects of TPFs to promote osteoblasts differentiation and bone formation remain unclear. TPFs were isolated from Tridax procumbens and investigated for their effects on osteoblasts differentiation and bone formation by using primary mouse calvarial osteoblasts RESULTS: TPFs promoted osteoblast differentiation in a dose-dependent manner demonstrated by up-regulation of alkaline phosphatase and osteocalcin. TPFs also upregulated osteoblast differentiation related genes, including osteocalcin, osterix, and Runx2 in primary osteoblasts. TPFs treated primary osteoblast cells showed significant upregulation of bone morphogenetic proteins (BMPs) including Bmp-2, Bmp-4, and Bmp-7. Addition of noggin, a BMP specific-antagonist, inhibited TPFs induced upregulation of the osteocalcin, osterix, and Runx2 CONCLUSION: Our findings point towards the induction of osteoblast differentiation by TPFs and suggested that TPFs could be a potential anabolic agent to treat patients with bone loss-associated diseases such as osteoporosis

Keywords : Alkaline phosphatase; Bone formation; Osteoblast differentiation; Osteocalcin.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License