SciELO - Scientific Electronic Library Online

 
vol.51The NK1 receptor antagonist NKP608 inhibits proliferation of human colorectal cancer cells via Wnt signaling pathwayThe effect of downregulation of Stathmin gene on biological behaviors of U373 and U87-MG glioblastoma cells author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Biological Research

Print version ISSN 0716-9760

Abstract

ZAVALA, Judith et al. Extracellular matrix and fibroblast injection produces pterygium-like lesion in rabbits. Biol. Res. [online]. 2018, vol.51, 15.  Epub June 15, 2018. ISSN 0716-9760.  http://dx.doi.org/10.1186/s40659-018-0165-8.

Background

Translational research to develop pharmaceutical and surgical treatments for pterygium requires a reliable and easy to produce animal model. Extracellular matrix and fibroblast are important components of pterygium. The aim of this study was to analyze the effect of the subconjunctival injection of fibroblast cells (NIH3T3 cell line) and exogenous extracellular matrix in rabbits in producing a pterygium-like lesion.

Methods

Six 3-month-old white New Zealand rabbits were injected with 20,000 NIH3T3 cells and 5 μL of Matrigel in the right conjunctiva, and with only 5 μL of Matrigel in the left conjunctiva. The eyes were photographed under a magnification of 16× using a 12-megapixel digital camera attached to the microscope on day 1,3 and 7. Conjunctival vascularization was measured by analyzing images to measure red pixel saturation. Area of corneal and conjunctival fibrovascular tissue formation on the site of injection was assessed by analyzing the images on day 3 and 7 using area measurement software. Histopathologic characteristics were determined in the rabbit tissues and compared with a human primary pterygium.

Results

The two treatments promoted growth of conjunctival fibrovascular tissue at day 7. The red pixel saturation and area of fibrovascular tissue developed was significantly higher in right eyes (p < 0.05). Tissues from both treatments showed neovascularization in lesser extent to that observed in human pterygium. Acanthosis, stromal inflammation, and edema were found in tissues of both treatments. No elastosis was found in either treatment.

Conclusions

Matrigel alone or in combination with NIH3T3 cells injected into the rabbits’ conjunctiva can promote tissue growth with characteristics of human pterygium, including neovascularization, acanthosis, stromal inflammation, and edema. The combination of Matrigel with NIH3T3 cells seems to have an additive effect on the size and redness of the pterygium-like tissue developed.

Keywords : Pterygium; Fibroblast; Rabbit; Extracellular matrix; Animal model.

        · text in English     · English ( pdf )