SciELO - Scientific Electronic Library Online

vol.14 número3QTL mapping for physiology, yield and plant architecture traits in cotton (Gossypium hirsutum L.) grown under well-watered versus water-stress conditionsDevelopmental rates of bovine nuclear transfer embryos derived from different fetal non transfected and transfected cells índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Electronic Journal of Biotechnology

versión On-line ISSN 0717-3458


MA, Yuan-Yuan et al. The changes of organelle ultrastructure and Ca2+ homeostasis in maize mesophyll cells during the process of drought-induced leaf senescence. Electron. J. Biotechnol. [online]. 2011, vol.14, n.3, pp.4-4. ISSN 0717-3458.

The changes of cell ultra structure as well as Ca2+ homeostasis involved in the drought-induced maize leaf senescence was investigated. Meanwhile, many indicatives of leaf senescence including thiobarbituric acid reactive substance (MDA), electrolyte leakage (EL), and chlorophyll along with soluble proteins were also detected during the process. The Polyethylene glycol6000(PEG6000)-incubated detached leaves showed a slight increase in the MDA content and electrolyte leakage during the first 30 min of our detection, which was corresponded to an unobvious alteration of the cell ultrastructure. Other typical senescence parameters measured in whole leaf exhibited a moderate elevation as well. Thereafter, however, the EL and MDA rose to a large extent, which was correlated with a dramatic damage to the cell ultrastructure with concomitant sharp decrease in the chlorophyll and soluble proteins content. The deposits of calcium antimonite, being an indicator for Ca2+ localization, were observed in the vacuoles as well as intercellular spaces in the leaves grown under normal condition. Nevertheless, after PEG treatment, it was revealed a distinct increment of Ca2+ in the cytoplasm as well as chloroplasts and nuclei. Moreover, with long-lasting treatment of PEG to the detached leaves, the concentration of Ca2+ as described above showed a continuous increment which was consist with the remarked alteration of physiological parameters and severe damage to the ultrastructure of cells, all of which indicated the leaf senescence. Such drought-induced leaf senescence might result from a loss of the cell's capability to extrude Ca2+. All above findings give us a good insight into the important role of Ca2+ homeostasis in the process of leaf senescence accelerated by the drought stress.

Palabras clave : Ca2+ homeostasis; drought; leaf senescence; maize; organelle ultrastructure; signal transduction.

        · texto en Inglés     · Inglés ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons