SciELO - Scientific Electronic Library Online

 
vol.18 issue3Overproduction of clavulanic acid by extractive fermentationMolecular cloning and antibacterial activity of hepcidin from Chinese rare minnow (Gobiocypris rarus) author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Electronic Journal of Biotechnology

On-line version ISSN 0717-3458

Abstract

ESPINOZA-SANCHEZ, Edward Alexander et al. Stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplast. Electron. J. Biotechnol. [online]. 2015, vol.18, n.3, pp.161-168. ISSN 0717-3458.  http://dx.doi.org/10.1016/j.ejbt.2015.03.002.

Background The high capacity of chloroplast genome response to integrate and express transgenes at high levels makes this technology a good option to produce proteins of interest. This report presents the stable expression of Pectin lyase (PelA gene) and the first stable expression of manganese peroxidase (MnP-2 gene) from the chloroplast genome. Results pES4 and pES5 vectors were derived from pPV111A plasmid and contain the PelA and MnP-2 synthetic genes, respectively. Both genes are flanked by a synthetic rrn16S promoter and the 3'UTR from rbcL gene. Efficient gene integration into both inverted repeats of the intergenic region between rrn16S and 3'rps'12 was confirmed by Southern blot. Stable processing and expression of the RNA were confirmed by Northern blot analysis. Enzymatic activity was evaluated to detect expression and functionality of both enzymes. In general, mature plants showed more activity than young transplastomic plants. Compared to wild type plants, transplastomic events expressing pectin lyase exhibited enzymatic activity above 58.5% of total soluble protein at neutral pH and 60°C. In contrast, MnP-2 showed high activity at pH 6 with optimum temperature at 65°C. Neither transplastomic plant exhibited an abnormal phenotype. Conclusion This study demonstrated that hydrolytic genes PelA and MnP-2 could be integrated and expressed correctly from the chloroplast genome of tobacco plants. A whole plant, having ~ 470 g of biomass could feasibly yield 66,676.25 units of pectin or 21,715.46 units of manganese peroxidase. Also, this study provides new information about methods and strategies for the expression of enzymes with industrial value.

Keywords : Cell wall; Chloroplast genetic transformation; Hydrolytic enzyme; Nicotiana tabacum.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License