SciELO - Scientific Electronic Library Online

 
vol.27 número1Ecuaciones locales y generalizadas de altura-diámetro para pino radiata (Pinus radiata)Desarrollo temprano del roble (Nothofagus obliqua): un análisis arquitectural de procedencias de Argentina índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Bosque (Valdivia)

versión On-line ISSN 0717-9200

Resumen

MENA FRAU, Carlos  y  MONTECINOS GUAJARDO, Rodrigo. Comparación de redes neuronales y regresión lineal para estimar productividad de sitio en plantaciones forestales, utilizando geomática. Bosque (Valdivia) [online]. 2006, vol.27, n.1, pp.35-43. ISSN 0717-9200.  http://dx.doi.org/10.4067/S0717-92002006000100004.

En la presente investigación se propone una metodología para estimar la productividad de sitio en plantaciones forestales mediante modelos de regresión lineal y redes neuronales, utilizando herramientas geomáticas, tales como sistemas de información geográfica (SIG), sistema de posicionamiento global (GPS) y fotogrametría. El estudio se llevó a cabo en la Estación Experimental "El Picazo", ubicada en la precordillera andina de la VII Región del Maule. Las variables independientes consideradas tienen relación con la distancia a los cursos de agua (DCA), modelo digital de elevaciones (MDE), modelo digital de orientaciones (MDO) y modelo digital de pendientes (MDP); como variable dependiente se utilizó la altura de los 100 individuos más altos por hectárea (H_100). En ambas técnicas de estimación, las variables finalmente seleccionadas fueron MDP y DCA. La calidad de las estimaciones generadas (R2 = 41,65%) se encontró dentro del rango establecido en investigaciones anteriores. El análisis de los resultados establece que el modelo neuronal presenta un menor error medio absoluto (EMA) y una raíz cuadrada del error cuadrático medio (RMSE) inferior respecto al modelo de regresión lineal múltiple, el cual presentó un menor sesgo medio (SM) y fue más fácil de integrar en un SIG. Por último, se destaca que la productividad de sitio basada en indicadores ambientales como los aquí considerados, permite conocer información útil para desarrollar programas de forestación en zonas despobladas.

Palabras clave : geomática; redes neuronales; productividad de sitio.

        · resumen en Inglés     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons