SciELO - Scientific Electronic Library Online

 
vol.34 issue2Evaluation of Anatomical and Surgical Understanding of th Inferior Vena Cava System by General Surgery InternsThree Dimensional Morphometry of Proximal Femur to Design Best-Fit Femoral Stem for Indonesian Population author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


International Journal of Morphology

On-line version ISSN 0717-9502

Abstract

LOREN, Pía et al. Modulation of Redox State by Hydrogen Peroxide in the Stage of Oocyte Maturation: Effect on Embryonic Development in Cattle. Int. J. Morphol. [online]. 2016, vol.34, n.2, pp.431-435. ISSN 0717-9502.  http://dx.doi.org/10.4067/S0717-95022016000200003.

Oxidative stress is defined as an imbalance between the production of oxidants and antioxidants. The induction of stress tolerance in oocytes leads to a better embryonic development. In cattle incubating mature oocytes with different stressors (thermal, high hydrostatic pressure, oxidative) increase the generation rate of blastocysts. The purpose of this study was to evaluate the effect of modulating the redox state increasing the oxidative stress through H2O2 in mature oocyte under in vitro culture conditions and its effect on the potential of embryonic development. To do this, oocytes from slaughterhouse ovaries were matured in TCM-199 medium supplemented for 22­23 h at 38.5 °C, 5 % CO2 and humidified atmosphere. At the end of 22­23 h, the treatments with 0, 50, 100 and 200 µM H2O2 were applied for 1 h. IVF was performed co-incubating the eggs for 18 h with a final concentration of 1x106 sperm/mL. The presumptive zygotes were denuded and cultured in medium KSOM-0.4 % BSA to 38.5 °C in an atmosphere of low concentration of O2 (5 % O2, 5 % CO2 and 90 % N2) and humidified atmosphere. The results show that the induction of oxidative stress by H2O2 produces a similar effect using a concentration of 50 and 100 mM in the cleavage rate of embryos compared to control (88.7 %, 83.2 % and 86,4 % respectively, p>0.05) and decreasing significantly by using a concentration of 200 mM (58.8 %, p<0.05). Also, H2O2 caused a similar effect on the rate of blastocysts with 50 µM (20.4 % vs. 25.8 control, p>0.05) but decreased significantly with 100 and 200 µM (10.7 % and 3.3 % respectively, p<0.05). It is possible that these embryos resistant to oxidative stress may have a higher survival in the cryopreservation processes that generating high levels of reactive oxygen species.

Keywords : In vitro fertilization; Oxidative stress; Stress tolerance; Reactive oxygen species.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License