SciELO - Scientific Electronic Library Online

vol.50 número1Synthesis of nanostructured materials by a new solid state pyrolysis organometallic polymer methodStyrene/1-alkene copolymerization by CpTiCl3-additive initiator systems índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados


Journal of the Chilean Chemical Society

versión On-line ISSN 0717-9707


AHUMADA, HERNÁN et al. Chiral Discrimination of L- and D-N-acyl-1-phenyl-d5-2-aminopropanes in a Cesium N-Dodecanoyl-L-Threoninate Cholesteric Nematic Lyomesophase. J. Chil. Chem. Soc. [online]. 2005, vol.50, n.1, pp.421-426. ISSN 0717-9707.

Molecular recognition based on chirality has fundamental importance in many biological processes. Deuterium quadrupole splittings from the aromatic ring and mesophase components of two series of optical isomers, L- and D-N-acyl-1-phenyl-d5-2-aminopropanes, dissolved in anionic nematic cholesteric lyotropic liquid crystals of cesium N-dodecanoyl-L-threoninate, were measured using 2H-NMR. The length of the acyl chain was 1, 2, 3, 4, 5, 7 and 10 carbon atoms. The two order parameters that fully characterize the average alignment of the aromatic ring were calculated. Both the L- and D- isomers are strongly attached to the aggregate. L-C1, D-C1, L-C2 and D-C2 derivatives have the same order parameters which suggests that are located in the same region of the interface, possibly H-bonded to the interstitial water molecules with the NH and/or CO groups. Increasing the hydrophobic chain length by one carbon atom decreases the overall alignment of the ring and differences between L-C3 and D-C3 were observed. Molecules with longer acyl chain progressively increase their quadrupole splittings, suggesting an increase in alignment. Increasing differences in the order parameter of the symmetry axis of the aromatic rings in both isomers were observed from C3 to C5, and almost no differentiation is detected between L-C7 and D-C7. However, differentiation appears again for C10, and is attributable to interactions with a second chiral center of the head group

Palabras clave : 2H-NMR Quadrupole Splittings; Order Parameters; Chiral Discrimination.

        · texto en Inglés


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons