SciELO - Scientific Electronic Library Online

 
vol.61 issue3A HIGHLY EFFICIENT SYNTHESIS OF SUBSTITUTED IMIDAZOLES VIA A ONE-POT MULTICOMPONENT REACTION BY USING UREA/HYDROGEN PEROXIDE (UHP)EVALUATION OF THE ANTIOXIDANT ACTIVITY OF THE FLAVONOIDS ISOLATED FROM HELIOTROPIUM SINUATUM RESIN USING ORAC FL, DPPH AND ESR METHODOLOGIES author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Journal of the Chilean Chemical Society

On-line version ISSN 0717-9707

Abstract

RODBARI, REZA JAMSHIDI et al. STUDY OF PHYSICAL AND CHEMICAL CHARACTERIZATION OF NANOCOMPOSITE POLYSTYRENE / GRAPHENE OXIDE HIGH ACIDITY CAN BE APPLIED IN THIN FILMS. J. Chil. Chem. Soc. [online]. 2016, vol.61, n.3, pp.3120-3124. ISSN 0717-9707.  http://dx.doi.org/10.4067/S0717-97072016000300023.

This paper shows a study of Nanocomposite formed by adding reduced Graphene oxide with high acidity and polystyrene. The interest and research in the material is due to the ability of these nanoparticles significantly altering the electrical and mechanical properties of the polymer, even addition of small levels. The existence of functional groups on the graphene oxide containing abundant oxygen such as; epoxy, hydroxyl and carboxylic acid, can be well dispersed in the polymer because of its good interaction with polymer chains. In this study we used the solution by dispersing method to that made the use of solvent tetrahydrofuran (THF), for purposes of obtaining a reaction with functionalization of graphene oxide / polystyrene in time of 48 hours. The analyses of physical-chemical characterizations were made diffraction X-ray (XRD), scanning electron microscopy (SEM), Infrared Spectroscopy (IRD), Thermogravimetric Analysis (TG) and Differential calorimeter by scanning (DSC). The results obtained by XRD diffraction pattern showed a strong expansion in the peak, indicating amorphization on single sheets of graphene oxide due to distorted sp3 sites CO. The morphology of the nanocomposite structure was with surface roughness, folds and rough predominant oxidation process of oxygenated functional groups. Their techniques showed the range of absorption, crystallinity degree and the mass loss. Finally, current and future possible applications of formed polystyrene nanocomposite/ graphene oxide show high acidity efficiency in the use of thin films.

Keywords : Nanocomposite; Dispersion; Graphene oxide; Polystyrene; Thin films.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License