SciELO - Scientific Electronic Library Online

 
vol.24 número3Selección de Estrategias de Mejoramiento de las Condiciones de Trabajo para la Función Mantenimiento Utilizando la Metodología MCDA ConstructivistaOptimización de la Eficiencia Térmica de un Motor Robinson Aplicando el Modelo Senft-Schmidt-Petrescu índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Información tecnológica

versión On-line ISSN 0718-0764

Resumen

ARANGO, Jaime A; GIRALDO, Jaime A  y  CASTRILLON, Omar D. Scheduling of Non-Related Parallel Machines with Sequence Dependent Setup Times and Dynamic Entry using Genetic Algorithms. Inf. tecnol. [online]. 2013, vol.24, n.3, pp.73-84. ISSN 0718-0764.  http://dx.doi.org/10.4067/S0718-07642013000300009.

This paper describes a solution method to the problem of processing n jobs on m non-related parallel machines. It is a linear and combinatorial generalized allocation problem that considered a sequence-dependent setup time and dynamic job entry. A genetic algorithm with integer coding and random generation of population, parent selection, crossover and mutation is proposed. There are two descendants per generation that are compared against the worst existing element to enter to population. After a number of generations that is proportional to the product of nxm the solution is generated. The jobs are sequenced on each machine by due date and computational times are acceptable. It is concluded that the proposed genetic algorithm is an effective and efficient solution that focuses on reducing processing time and on meeting deadlines.

Palabras clave : meta-heuristics; parallel machines; optimization; activity scheduling.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons