SciELO - Scientific Electronic Library Online

 
vol.29 número5Modelo basado en Agentes para la Detección de Fallas Cognitivas en Entornos de Aprendizaje ColaborativoCarbones de Bajo Rango como Recurso para Enmiendas Húmicas mediante Transformación Microbiana índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Información tecnológica

versión On-line ISSN 0718-0764

Resumen

JIMENEZ-CARRION, Miguel. Simple Genetic Algorithm to solve the Job Shop Scheduling Problem. Inf. tecnol. [online]. 2018, vol.29, n.5, pp.299-314. ISSN 0718-0764.  http://dx.doi.org/10.4067/S0718-07642018000500299.

A simple genetic algorithm has been implemented to solve the Job Shop Scheduling Problem (JSSP). The chromosome design represents a feasible solution and meets all restrictions. The selection mechanism per tournament was used, a 95% reproduction based on partial pairing with two crossing points, a mixed strategy in the mutation stage combining the method of exchange and the method of investment using two random points in each machine and a percentage of progressive mutation between 2% to 5%. The results show that the algorithm must be executed with 100 individuals as population size and 500 generations for problems whose operation times are between 0 and 10 units of time and with 100 individuals and 1500 generations for problems between 0 and 100 units of time. The study shows that the implemented algorithm finds optimal solutions in the first case and highly competitive solutions in the second case. These are comparable with the results published in the literature that are generally responses to hybrid algorithms re-energized with other metaheuristics.

Palabras clave : assigning tasks; genetic algorithm; detailed planning; sequence of operations.

        · resumen en Español     · texto en Español     · Español ( pdf )