SciELO - Scientific Electronic Library Online

 
vol.30 número2Estudio Volumétrico, Viscosimétrico y Termodinámico de DL-Alanina en Soluciones Acuosas de Sulfato de sodio a diferentes TemperaturasUn Enfoque para Aplicar la Visión por Computador en el Control de Calidad de Refrigeradores sobre la Línea de Ensamble índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Información tecnológica

versión On-line ISSN 0718-0764

Resumen

PHAM, Trung T.; LOBOS, Gustavo A.  y  VIDAL-SILVA, Cristian L.. Innovation in Data Mining for the Image Processing: K-means Clustering for Data Sets of Elongated Forms and its Application in the Agroindustry. Inf. tecnol. [online]. 2019, vol.30, n.2, pp.135-142. ISSN 0718-0764.  http://dx.doi.org/10.4067/S0718-07642019000200135.

This paper presents an innovative modified method of K-means clustering based on the set theory together with its application in the processing images of the agroindustry field. Traditional K-means permits the clustering of sets in subsets by means of defining their center according to the distance formula. When the data is concentrated in forms without a hyper-spherical sense, this tool allows the center of the set, with a single point, to become a subset of many points. In this article we present a modification of the distance formula that allows giving more flexibility for the study of cases in agriculture. Using numerical examples, the functionality and applicability of the modified method of K-means grouping is evaluated in infrared images from water deficit tests in wheat.

Palabras clave : K-means clustering; set theory; distance function; environmental stress monitoring.

        · resumen en Español     · texto en Español     · Español ( pdf )