SciELO - Scientific Electronic Library Online

 
vol.30 número2Análisis de los Indicadores de Citación de las Revistas Científicas Colombianas en el Área de IngenieríaLeer, Escribir y Comunicarse en Otro Idioma con Nuevas Prácticas Letradas Fuera del Aula de Clase índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Información tecnológica

versión On-line ISSN 0718-0764

Resumen

GOMEZ, Rodrigo A.; SALAZAR, Fernando  y  RINCON, Nicolás. Metaheuristics for Solving the Routing Problem of Collecting Leftover Medicines and Supplies in Hospitals. Inf. tecnol. [online]. 2019, vol.30, n.2, pp.303-314. ISSN 0718-0764.  http://dx.doi.org/10.4067/S0718-07642019000200303.

This article aims to formulate and solve a routing problem for the collection of surplus leftover medicines and supplies in the minimum possible time. To solve the problem, two metaheuristics called simulated annealing (RS) and particle swarm optimization (PSO) are applied. Additionally, factors such as collection list size (TLR), size of collection car fleet (TFCR), as well as hospital room quantities are modeled. From the experimental validation it was detected that the levels of the PSO metaheuristic with the TLR level of 250 products, generates shorter collection times with values ​​of 58.30 and 57.30 minutes / set of routes. Meanwhile, a combination of the TLR levels of 400 products, with the RS metaheuristic, produces the lowest average routing time with values ​​of 99.33 and 101.24 minutes / set of routes. These results showed the effectiveness of metaheuristics to solve the problem of routing in hospital logistics.

Palabras clave : routing; hospital logistics; simulated annealing; particle swarm.

        · resumen en Español     · texto en Español     · Español ( pdf )